Jump boundary-value problem on a contour with elongate singularities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 12-16
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma$ be an image of the interval $(0,1)$ under one-to-one continuous mapping $\phi: (0,1)\to \mathbb{C}$. If the difference of closure of $\Gamma$ and the very set $\Gamma$ contains more than one point, then we say that $\Gamma$ is a contour with elongate singularities. We study the jump boundary-value problem for analytical functions on that contours and obtain new solvability criteria for it.
Keywords:
jump problem, contour with singularities.
@article{IVM_2017_1_a1,
author = {B. A. Kats and S. R. Mironova and A. Yu. Pogodina},
title = {Jump boundary-value problem on a contour with elongate singularities},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {12--16},
publisher = {mathdoc},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_1_a1/}
}
TY - JOUR AU - B. A. Kats AU - S. R. Mironova AU - A. Yu. Pogodina TI - Jump boundary-value problem on a contour with elongate singularities JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 12 EP - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_1_a1/ LA - ru ID - IVM_2017_1_a1 ER -
B. A. Kats; S. R. Mironova; A. Yu. Pogodina. Jump boundary-value problem on a contour with elongate singularities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 12-16. http://geodesic.mathdoc.fr/item/IVM_2017_1_a1/