Isomorphisms of formal matrix incidence rings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 84-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2008 P.A. Krylov showed that formal matrix rings $K_{s}(R)$ and $K_{t}(R)$ are isomorphic if and only if elements $s$ and $t$ differ by invertible element, up to automorphism. The same result was proved and for many different cases. This paper concerns formal matrix rings (and algebras) with the same structure as incidence rings. We show that isomorphism problem for formal matrix incidence rings can be reduced to isomorphism problem of generalized incidence algebras. It appears that straight part of Krylov's theorem holds for this algebras whilst the opposite is not true. In particular, full classification of isomorphisms of generalized incidence algebras of order 4 over a field is constructed. Also isomorphism problem for a special case of formal matrix rings is considered: formal matrix rings with zero trace ideals.
Keywords: formal matrix ring, incidence algebra, generalized incidence algebra, isomorphism problem, upper-triangular matrix ring, zero trace ideals.
@article{IVM_2017_12_a8,
     author = {D. T. Tapkin},
     title = {Isomorphisms of formal matrix incidence rings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--91},
     publisher = {mathdoc},
     number = {12},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_12_a8/}
}
TY  - JOUR
AU  - D. T. Tapkin
TI  - Isomorphisms of formal matrix incidence rings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 84
EP  - 91
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_12_a8/
LA  - ru
ID  - IVM_2017_12_a8
ER  - 
%0 Journal Article
%A D. T. Tapkin
%T Isomorphisms of formal matrix incidence rings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 84-91
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_12_a8/
%G ru
%F IVM_2017_12_a8
D. T. Tapkin. Isomorphisms of formal matrix incidence rings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 84-91. http://geodesic.mathdoc.fr/item/IVM_2017_12_a8/

[1] Krylov P. A., “Ob izomorfizme kolets obobschennykh matrits”, Algebra i logika, 47:4 (2008), 456–463 | MR | Zbl

[2] Anh P. N., van Wyk L., “Automorphism group of generalized triangular matrix rings”, Linear Algebra and Appl., 434:4 (2011), 1018–1026 | DOI | MR | Zbl

[3] Anh P. N., van Wyk L., “Isomorphisms between strongly triangular matrix rings”, Linear Algebra and Appl., 438:11 (2013), 4374–4381 | DOI | MR | Zbl

[4] Boboc C., Dascalescu S., van Wyk L., “Isomorphisms between Morita context rings”, Linear and Multilinear Algebra, 60:5 (2012), 545–563 | DOI | MR | Zbl

[5] Tapkin D. T., “Koltsa formalnykh matrits i obobschenie algebry intsidentnosti”, Chebyshevsk. sb., 16:3 (2015), 422–449 | MR