Multimodular spaces and their properties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 57-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the so-called multimodular spaces and their particular cases. These investigations generalize some definitions and theorems obtained by S. Mazur, W. Orlicz and J. Muzielak.
Keywords: modular spaces, multimodular spaces, generalized Orlicz spaces and classes, spaces $E_{\varphi}$.
@article{IVM_2017_12_a5,
     author = {V. I. Filippov},
     title = {Multimodular spaces and their properties},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--65},
     publisher = {mathdoc},
     number = {12},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_12_a5/}
}
TY  - JOUR
AU  - V. I. Filippov
TI  - Multimodular spaces and their properties
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 57
EP  - 65
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_12_a5/
LA  - ru
ID  - IVM_2017_12_a5
ER  - 
%0 Journal Article
%A V. I. Filippov
%T Multimodular spaces and their properties
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 57-65
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_12_a5/
%G ru
%F IVM_2017_12_a5
V. I. Filippov. Multimodular spaces and their properties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 57-65. http://geodesic.mathdoc.fr/item/IVM_2017_12_a5/

[1] Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl

[2] Filippov V. I., “Linear continuous functionals and representation of functions by series in the spaces $E_{\varphi}$”, Anal. Math., 27:4 (2001), 239–260 | DOI | MR | Zbl

[3] Filippov V. I., “Ob usilenii rezultatov A. N. Kolmogorova o ryadakh Fure i sopryazhennykh funktsiyakh”, Izv. vuzov. Matem., 2012, no. 7, 21–34 | Zbl

[4] Filippov V. I., “Sistemy predstavleniya, poluchennye iz szhatii i sdvigov odnoi funktsii v mnogomernykh prostranstvakh $E_{\varphi}$”, Izv. RAN, ser. matem., 76:6 (2012), 193–206 | DOI

[5] Golubov B. I., “Absolyutnaya skhodimost dvoinykh ryadov iz koeffitsientov Fure–Khaara funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 2012, no. 6, 3–13 | Zbl

[6] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987

[7] Tolstov G. P., Mera i integral, Nauka, M., 1976