The Dirichlet problem for telegraph equation in a rectangular domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 46-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the Dirichlet problem for telegraph equation in rectangular domain. We establish a criterion of uniqueness. The solution to the problem is constructed in the form of the sum of orthogonal series. In substantiation of convergence of the series there appears the problem of small denominators. In connection with this we establish the estimates of separation from zero of denominators with the corresponding asymptotics which allow to substantiate the existence of a regular solution and prove its stability depending on boundary functions.
Keywords: telegraph equation, the Dirichlet problem, spectral method, criterion of uniqueness, small denominators, stability.
@article{IVM_2017_12_a4,
     author = {Yu. K. Sabitova},
     title = {The {Dirichlet} problem for telegraph equation in a rectangular domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--56},
     publisher = {mathdoc},
     number = {12},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_12_a4/}
}
TY  - JOUR
AU  - Yu. K. Sabitova
TI  - The Dirichlet problem for telegraph equation in a rectangular domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 46
EP  - 56
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_12_a4/
LA  - ru
ID  - IVM_2017_12_a4
ER  - 
%0 Journal Article
%A Yu. K. Sabitova
%T The Dirichlet problem for telegraph equation in a rectangular domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 46-56
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_12_a4/
%G ru
%F IVM_2017_12_a4
Yu. K. Sabitova. The Dirichlet problem for telegraph equation in a rectangular domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 46-56. http://geodesic.mathdoc.fr/item/IVM_2017_12_a4/

[1] Hadamard J., “Equations aux derivees partielles le cas hyperbolique”, L'Enseignement Math., 35:1 (1936), 25–29 | MR

[2] Huber A., “Die erste Randwertaufgabe für geschlossene Bereiche bei der Gleichung $u_{xy}=f(x,y)$”, Monatsh. Math. und Phys., 39 (1932), 79–100 | DOI | MR

[3] Mangeron D., “Sopra un problema al contorno per un'equazione differeziale alle derivate parziali di quarto ordine con le caratteristiche realidoppie”, Rend. Accad. sci. fis. mat. Soc. naz. sci. lett. arti Napoli, 1932, no. 2, 29–40

[4] Bourgin P. G., Duffin R., “The Diriclet problem the virbating string equation”, Bull. Amer. Math. Soc., 45:12 (1939), 851–858 | DOI | MR

[5] Bourgin P. G., “The Diriclet problem the damped wave equation”, Duke. Math. J., 1940, no. 7, 97–120 | DOI | MR

[6] Jonh F., “Diriclet problem for a hyperbolic equation”, Amer. J. Math., 63:1 (1941), 141–154 | DOI | MR

[7] Sobolev S. L., “Primer korrektnoi zadachi dlya uravneniya kolebaniya struny s dannymi na vsei granitse”, DAN SSSR, 73:4 (1956), 707–709

[8] Aleksandryan R. A., “O zadache Dirikhle dlya uravneniya struny iop olnote odnoi sistemy funktsii v kruge”, DAN SSSR, 73:5 (1950), 869–872 | MR

[9] Vakhaniya N. N., “Ob odnoi kraevoi zadache s dannymi na vsei granitse dlya giperbolicheskoi sistemy, ekvivalentnoi uravneniyu kolebaniya struny”, DAN SSSR, 116:6 (1957), 906–909 | Zbl

[10] Berezanskii Yu. M., “O zadache Dirikhle dlya uravneniya kolebaniya struny”, Ukrainsk. matem. zhurn., 12:4 (1960), 363–372

[11] Mosolov P. P., “O zadache Dirikhle dlya uravnenii v chastnykh proizvodnykh”, Izv. vuzov. Matem., 1960, no. 3, 213–218 | Zbl

[12] Arnold V. I., “Malye znamenateli”, Izv. AN SSSR. Ser. matem., 25 (1961), 21–86

[13] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6(114) (1963), 91–192 | MR | Zbl

[14] Kapitonov B. V., “O razreshimosti zadachi Dirikhle dlya telegrafnogo uravneniya”, Sib. matem. zhurn., 17:2 (1976), 273–281 | MR | Zbl

[15] Sabitov K. B., “Zadacha Dirikhle dlya differentsialnykh uravnenii v chastnykh proizvodnykh vysokikh poryadkov”, Matem. zametki, 97:2 (2015), 262–276 | DOI | Zbl

[16] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Nauk. Dumka, Kiev, 1965

[17] Mazya V. G., Shaposhnikova T. O., Zhak Adamar — legenda matematiki, MTsNMO, M., 2008

[18] Arnold V. I., Matematicheskoe ponimanie prirody, 2 izd., MTsNMO, M., 2010

[19] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | Zbl

[20] Moiseev E. I., “O razreshimosti odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 37:11 (2001), 1565–1567 | Zbl

[21] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Matem. zametki, 87:6 (2010), 907–918 | DOI

[22] Khinchin A. Ya., Tsepnye drobi, Nauka, M., 1978

[23] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, M., 1966 | MR