On some functional calculus of closed operators on Banach space. III. Some topics of perturbation theory
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 24-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is a continuation of research of A.A. Atvinovskii and the author of functional calculus of closed operators on Banach spaces based on Markov and related functions as symbols. The following topics in the perturbation theory are considered: estimates of bounded perturbations of operator functions with respect to general operator ideal norms, operator Lipschitzness, moment inequality, Freshet operator differentiability, analyticity of operator functions under consideration with respect to the perturbation parameter, spectral shift function and Livshits–Krein trace formula.
Keywords: perturbation of an operator, operator Lipschitzness, moment inequality, operator differentiability, spectral shift function, Livshits–Krein trace formula.
@article{IVM_2017_12_a2,
     author = {A. R. Mirotin},
     title = {On some functional calculus of closed operators on {Banach} space. {III.} {Some} topics of perturbation theory},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {24--34},
     publisher = {mathdoc},
     number = {12},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_12_a2/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - On some functional calculus of closed operators on Banach space. III. Some topics of perturbation theory
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 24
EP  - 34
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_12_a2/
LA  - ru
ID  - IVM_2017_12_a2
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T On some functional calculus of closed operators on Banach space. III. Some topics of perturbation theory
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 24-34
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_12_a2/
%G ru
%F IVM_2017_12_a2
A. R. Mirotin. On some functional calculus of closed operators on Banach space. III. Some topics of perturbation theory. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 24-34. http://geodesic.mathdoc.fr/item/IVM_2017_12_a2/

[1] Aleksandrov A. B., Peller V. V., Operatorno lipshitsevy funktsii, 2016, arXiv: 1602.07994 [math.FA]

[2] Kissin E., Shulman V. S., “Classes of operator-smooth functions. I. Operator Lipschitz functions”, Proc. Edinburgh Math. Soc., 48 (2005), 151–173 | DOI | MR | Zbl

[3] Kissin E., Potapov D., Sukochev F., Shulman V. S., “Lipschitz functions, Schatten ideals and unbounded derivations”, Functional Anal. and Appl., 45:2 (2011), 93–96 | DOI | MR | Zbl

[4] Ayre P. J., Cowling M. G., Sukochev F. A., “Operator Lipschitz estimates in the unitary setting”, Proc. Amer. Math. Soc., 144:3 (2016), 1053–1057 | DOI | MR | Zbl

[5] Kissin E., Potapov D., Shulman V., Sukochev F., “Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations”, Proc. London Math. Soc., 105:4 (2012), 661–702 | DOI | MR | Zbl

[6] Atvinovskii A. A., Mirotin A. R., “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve”, Izv. vuzov. Matem., 2013, no. 10, 3–15 | MR | Zbl

[7] Atvinovskii A. A., Mirotin A. R., Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve. II, 2015, no. 5, 3–16 | MR | Zbl

[8] Atvinovskii A. A., Mirotin A. R., “Obraschenie odnogo klassa operatorov v banakhovom prostranstve i nekotorye ego primeneniya”, Probl. fiz., matem. i tekhn., 2013, no. 3(16), 55–60

[9] Atvinovskii A. A., Mirotin A. R., “Obraschenie lineinoi kombinatsii znachenii rezolventy zamknutogo operatora”, Probl. fiz., matem. i tekhn., 2014, no. 3(20), 77–79

[10] Rozendaal J., Sukochev F., Tomskova A., “Operator Lipschitz functions on Banach spaces”, Stud. Math., 232:1 (2016), 57–92 | MR | Zbl

[11] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973

[12] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 1, Elementarnye funktsii, Nauka, M., 1981

[13] Pustylnik E. I., “O funktsiyakh pozitivnogo operatora”, Matem. sb., 119:1 (1982), 32–47 | MR | Zbl

[14] Lancien F., Le Merdy C., On functional calculus properties of Ritt operators, arXiv: 1301.4875v1 | MR

[15] Lyubich Yu., “Spectral localization, power boundedness and invariant subspaces under Ritt's type condition”, Stud. Math., 134 (1999), 153–167 | DOI | MR | Zbl

[16] Mirotin A. R., “O nekotorykh svoistvakh mnogomernogo funktsionalnogo ischisleniya Bokhnera–Fillipsa”, Sib. matem. zhurn., 52:6 (2011), 1300–1312 | MR

[17] Mirotin A. R., Atvinovskii A. A., “O nekotorykh svoistvakh funktsionalnogo ischisleniya zamknutykh operatorov v banakhovom prostranstve”, Probl. fiz., matem. i tekhn., 2016, no. 4(29)

[18] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[19] Lifshits I. M., “Ob odnoi zadache teorii vozmuschenii”, UMN, 7:1 (1952), 171–180 | MR | Zbl

[20] Krein M. G., “O formule sledov v teorii vozmuschenii”, Matem. sb., 33:3 (1953), 597–626 | Zbl

[21] Krein M. G., “Ob opredelitelyakh vozmuscheniya i formule sledov dlya unitarnykh i samosopryazhennykh operatorov”, DAN SSSR, 144:2 (1962), 268–271 | Zbl

[22] Birman M. Sh., Yafaev D. R., “Funktsiya spektralnogo sdviga. Raboty M. G. Kreina i ikh dalneishee razvitie”, Algebra i analiz, 4 (1992), 1–44

[23] Peller V. V., “The Lifshitz–Krein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144 (2016), 5207–5215 | DOI | MR | Zbl

[24] Defant A., Floret K., Tensor norms and operator ideals, North-Holland, Amsterdam, 1993 | MR | Zbl