MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 16-23
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the infinitesimal MG-deformations of a simply connected surface with positive Gaussian curvature. We choose any symmetric tensor on the surface, variation of the first and the second invariant of this tensor equals given function along a boundary. The study of this boundary-value problems is reduced to the investigation of a solvability of Riemann–Gilbert boundary-value problem and to calculation of its index. As a result we get theorems of existence and uniqness for the infinitesimal MG-deformation.
Keywords:
infinitesimal MG-deformations, simply-connected surface, Riemann–Gilbert boundary-value problem, index.
@article{IVM_2017_12_a1,
author = {D. A. Zhukov},
title = {MG-deformations of a surface of positive {Gaussian} curvature under assignment of variation of any tensor along an edge},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {16--23},
publisher = {mathdoc},
number = {12},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_12_a1/}
}
TY - JOUR AU - D. A. Zhukov TI - MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 16 EP - 23 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_12_a1/ LA - ru ID - IVM_2017_12_a1 ER -
%0 Journal Article %A D. A. Zhukov %T MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 16-23 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_12_a1/ %G ru %F IVM_2017_12_a1
D. A. Zhukov. MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 16-23. http://geodesic.mathdoc.fr/item/IVM_2017_12_a1/