MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 16-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the infinitesimal MG-deformations of a simply connected surface with positive Gaussian curvature. We choose any symmetric tensor on the surface, variation of the first and the second invariant of this tensor equals given function along a boundary. The study of this boundary-value problems is reduced to the investigation of a solvability of Riemann–Gilbert boundary-value problem and to calculation of its index. As a result we get theorems of existence and uniqness for the infinitesimal MG-deformation.
Keywords: infinitesimal MG-deformations, simply-connected surface, Riemann–Gilbert boundary-value problem, index.
@article{IVM_2017_12_a1,
     author = {D. A. Zhukov},
     title = {MG-deformations of a surface of positive {Gaussian} curvature under assignment of variation of any tensor along an edge},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--23},
     publisher = {mathdoc},
     number = {12},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_12_a1/}
}
TY  - JOUR
AU  - D. A. Zhukov
TI  - MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 16
EP  - 23
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_12_a1/
LA  - ru
ID  - IVM_2017_12_a1
ER  - 
%0 Journal Article
%A D. A. Zhukov
%T MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 16-23
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_12_a1/
%G ru
%F IVM_2017_12_a1
D. A. Zhukov. MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 16-23. http://geodesic.mathdoc.fr/item/IVM_2017_12_a1/

[1] Fomenko V. T., “Raspredelenie nezhestkikh vneshnikh svyazei obobschennogo skolzheniya v teorii beskonechno malykh deformatsii poverkhnostei”, Tr. geometrichesk. seminara KGU, 24, 2003, 169–178

[2] Zhukov D. A., “On infinitesimal MG-deformations of a surface of positive Gaussian curvature with stationarity of normal curvature along boundary”, Contemporary probl. of math., mechan. and computing sci., Apostrof, Kharkov, 2011, 377–384

[3] Zhukov D. A., “Beskonechno malye MG-deformatsii poverkhnosti polozhitelnoi gaussovoi krivizny pri statsionarnosti srednei krivizny vdol kraya”, Nauchno-tekhn. vestn. Povolzhya, 3 (2012), 18–25

[4] Kagan V. F., Osnovy teorii poverkhnostei, v. I, Gostekhizdat, M., 1947

[5] Fomenko V. T., Ob izgibanii i odnoznachnoi opredelennosti poverkhnostei polozhitelnoi krivizny s kraem, Izd-vo TGPI, Taganrog, 2011

[6] Fomenko V. T., “Ob odnom analoge teoremy Zauera”, Matem. zametki, 74:3 (2003), 464–470 | DOI

[7] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR

[8] Gakhov F. D., Kraevye zadachi, Fizmatgiz, M., 1958