Rings over which every module is an $I_0^*$-module
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a description of semi-artinian rings, over which every module is an $I_{0}^{*}$-module. We also describe semi-artinian rings, over which every module is a direct sum of projective module and $V$-module.
Keywords: semi-artinian rings, $V$-rings
Mots-clés : $I_{0}$-modules, $I_{0}^{*}$-modules, quasiprojective modules.
@article{IVM_2017_12_a0,
     author = {A. N. Abyzov},
     title = {Rings over which every module is an $I_0^*$-module},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {12},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
TI  - Rings over which every module is an $I_0^*$-module
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 3
EP  - 15
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/
LA  - ru
ID  - IVM_2017_12_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%T Rings over which every module is an $I_0^*$-module
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 3-15
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/
%G ru
%F IVM_2017_12_a0
A. N. Abyzov. Rings over which every module is an $I_0^*$-module. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/

[1] Abyzov A. N., “$I^{\star}_{0}$-moduli”, Izv. vuzov. Matem., 2014, no. 8, 3–17

[2] Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting modules. Supplements and projectivity in module theory, Frontiers Math., Birkhauser, Boston, 2006 | MR | Zbl

[3] Oshiro K., Wisbauer R., “Modules with every subgenerated module lifting”, Osaka J. Math., 32 (1995), 513–519 | MR | Zbl

[4] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[5] Tuganbaev A. A., Rings close to regular, Kluwer Academic Publ., Dordrecht–Boston–London, 2002 | MR | Zbl

[6] Wisbauer R., Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl

[7] Jain S. K., Srivastava A. K., Tuganbaev A. A., Cyclic modules and the structure of rings, Oxford University Press, Oxford, 2012 | MR | Zbl

[8] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending modules, Pitman, London, 1994 | MR | Zbl

[9] Abyzov A. N., “Slabo regulyarnye moduli nad normalnymi koltsami”, Sib. matem. zhurn., 49:4 (2008), 721–738 | Zbl

[10] Baccella G., “Semi-artinian $V$-rings and semi-artinian von Neumann regular rings”, J. Algebra, 173:3 (1995), 587–612 | DOI | MR | Zbl

[11] Abyzov A. N., “O nekotorykh klassakh poluartinovykh kolets”, Sib. matem. zhurn., 53:5 (2012), 955–966

[12] Abyzov A. N., “Obobschennye SV-moduli”, Sib. matem. zhurn., 50:3 (2009), 481–488 | Zbl

[13] Dinh H. Q., Huynh D. V., “Some results on self-injective rings and CS rings”, Commun. Algebra, 31:12 (2003), 6063–6077 | DOI | MR | Zbl