Rings over which every module is an $I_0^*$-module
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a description of semi-artinian rings, over which every module is an $I_{0}^{*}$-module. We also describe semi-artinian rings, over which every module is a direct sum of projective module and $V$-module.
Keywords: semi-artinian rings, $V$-rings
Mots-clés : $I_{0}$-modules, $I_{0}^{*}$-modules, quasiprojective modules.
@article{IVM_2017_12_a0,
     author = {A. N. Abyzov},
     title = {Rings over which every module is an $I_0^*$-module},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {12},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
TI  - Rings over which every module is an $I_0^*$-module
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 3
EP  - 15
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/
LA  - ru
ID  - IVM_2017_12_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%T Rings over which every module is an $I_0^*$-module
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 3-15
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/
%G ru
%F IVM_2017_12_a0
A. N. Abyzov. Rings over which every module is an $I_0^*$-module. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/