Rings over which every module is an $I_0^*$-module
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 3-15
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a description of semi-artinian rings, over which every module is an $I_{0}^{*}$-module. We also describe semi-artinian rings, over which every module is a direct sum of projective module and $V$-module.
Keywords:
semi-artinian rings, $V$-rings
Mots-clés : $I_{0}$-modules, $I_{0}^{*}$-modules, quasiprojective modules.
Mots-clés : $I_{0}$-modules, $I_{0}^{*}$-modules, quasiprojective modules.
@article{IVM_2017_12_a0,
author = {A. N. Abyzov},
title = {Rings over which every module is an $I_0^*$-module},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--15},
publisher = {mathdoc},
number = {12},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/}
}
A. N. Abyzov. Rings over which every module is an $I_0^*$-module. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/