Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_12_a0, author = {A. N. Abyzov}, title = {Rings over which every module is an $I_0^*$-module}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--15}, publisher = {mathdoc}, number = {12}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/} }
A. N. Abyzov. Rings over which every module is an $I_0^*$-module. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2017_12_a0/
[1] Abyzov A. N., “$I^{\star}_{0}$-moduli”, Izv. vuzov. Matem., 2014, no. 8, 3–17
[2] Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting modules. Supplements and projectivity in module theory, Frontiers Math., Birkhauser, Boston, 2006 | MR | Zbl
[3] Oshiro K., Wisbauer R., “Modules with every subgenerated module lifting”, Osaka J. Math., 32 (1995), 513–519 | MR | Zbl
[4] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009
[5] Tuganbaev A. A., Rings close to regular, Kluwer Academic Publ., Dordrecht–Boston–London, 2002 | MR | Zbl
[6] Wisbauer R., Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl
[7] Jain S. K., Srivastava A. K., Tuganbaev A. A., Cyclic modules and the structure of rings, Oxford University Press, Oxford, 2012 | MR | Zbl
[8] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending modules, Pitman, London, 1994 | MR | Zbl
[9] Abyzov A. N., “Slabo regulyarnye moduli nad normalnymi koltsami”, Sib. matem. zhurn., 49:4 (2008), 721–738 | Zbl
[10] Baccella G., “Semi-artinian $V$-rings and semi-artinian von Neumann regular rings”, J. Algebra, 173:3 (1995), 587–612 | DOI | MR | Zbl
[11] Abyzov A. N., “O nekotorykh klassakh poluartinovykh kolets”, Sib. matem. zhurn., 53:5 (2012), 955–966
[12] Abyzov A. N., “Obobschennye SV-moduli”, Sib. matem. zhurn., 50:3 (2009), 481–488 | Zbl
[13] Dinh H. Q., Huynh D. V., “Some results on self-injective rings and CS rings”, Commun. Algebra, 31:12 (2003), 6063–6077 | DOI | MR | Zbl