Nonstationary transversal vibrations of thermoelastic web with a constant velocity motion
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 78-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider axial movements of elastic web performing small transversal vibrations. We take into account thermal loadings on the moving web (panel) and determine the critical temperature providing the divergence (non-stability) of thermoelastic panel. We perform an analysis of non-stationary vibrations of the panel. Solving dynamical problem is based on application of Galerkin's method. As an example, we present the analytical solution to the problem of non-stationary thermoelastic panel vibrations for the case of two shape functions.
Keywords: moving materials, thermoelastic panel, non-stationary vibrations, Galerkin's method.
Mots-clés : divergence
@article{IVM_2017_11_a8,
     author = {N. V. Banichuk and S. Yu. Ivanova and V. S. Afanas'ev},
     title = {Nonstationary transversal vibrations of thermoelastic web with a constant velocity motion},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {78--83},
     year = {2017},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_11_a8/}
}
TY  - JOUR
AU  - N. V. Banichuk
AU  - S. Yu. Ivanova
AU  - V. S. Afanas'ev
TI  - Nonstationary transversal vibrations of thermoelastic web with a constant velocity motion
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 78
EP  - 83
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_11_a8/
LA  - ru
ID  - IVM_2017_11_a8
ER  - 
%0 Journal Article
%A N. V. Banichuk
%A S. Yu. Ivanova
%A V. S. Afanas'ev
%T Nonstationary transversal vibrations of thermoelastic web with a constant velocity motion
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 78-83
%N 11
%U http://geodesic.mathdoc.fr/item/IVM_2017_11_a8/
%G ru
%F IVM_2017_11_a8
N. V. Banichuk; S. Yu. Ivanova; V. S. Afanas'ev. Nonstationary transversal vibrations of thermoelastic web with a constant velocity motion. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 78-83. http://geodesic.mathdoc.fr/item/IVM_2017_11_a8/

[1] Banichuk N., Jeronen J., Neittaamäki P., Saksa T., Tuovinen T., Mechanics of moving materials, Sol. Mech. and its Appl., 207, Springer, Cham, 2014 | DOI | MR | Zbl

[2] Sack R. A., “Transvers oscillations in travelling strings”, British J. Appl. Phys., 5:6 (1954), 224–226 | DOI

[3] Archibald F. R., Emslie A. G., “The vibration of a string having a uniform motion along its length”, ASME J. Appl. Mech., 25:3 (1958), 347–348 | Zbl

[4] Mote C. D., “Dynamic stability of an axially moving band”, J. Franklin Institute, 285:5 (1968), 329–346 | DOI | Zbl

[5] Simpson A., “Transvers modes and frequencies of beams translating between fixed end supports”, J. Mech. Eng. Sci., 15:3 (1973), 159–164 | DOI

[6] Lin C. C., Mote C. D., “Equilibrium displacement and stress distribution in a two-dimensional, axially moving web under transverse loading”, ASME J. Appl. Mech., 62:3 (1995), 772–779 | DOI | Zbl

[7] Lin C. C., “Stability and vibration characteristics of axially moving plates”, Int. J. Solid Struc., 34:24 (1997), 3179–3190 | DOI | Zbl

[8] Banichuk N., Jeronen J., Neittaanmäki P., Tuovinen T., “On the instability of an axially moving elastic plate”, Int. J. Solid Struc., 47:1 (2010), 91–99 | DOI | Zbl

[9] Banichuk N., Jeronen J., Neittaanmäki P., Tuovinen T., “Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid”, J. Fluid Struc., 26:2 (2010), 274–291 | DOI

[10] Timoshenko S. P., Voinovskii-Kriger S., Plastinki i obolochki, Nauka, M., 1966

[11] Kovalenko A. D., Termouprugost, “Vischa Shkola”, Kiev, 1975