Nonstationary transversal vibrations of thermoelastic web with a constant velocity motion
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 78-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider axial movements of elastic web performing small transversal vibrations. We take into account thermal loadings on the moving web (panel) and determine the critical temperature providing the divergence (non-stability) of thermoelastic panel. We perform an analysis of non-stationary vibrations of the panel. Solving dynamical problem is based on application of Galerkin's method. As an example, we present the analytical solution to the problem of non-stationary thermoelastic panel vibrations for the case of two shape functions.
Keywords: moving materials, thermoelastic panel, non-stationary vibrations, Galerkin's method.
Mots-clés : divergence
@article{IVM_2017_11_a8,
     author = {N. V. Banichuk and S. Yu. Ivanova and V. S. Afanas'ev},
     title = {Nonstationary transversal vibrations of thermoelastic web with a constant velocity motion},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {78--83},
     publisher = {mathdoc},
     number = {11},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_11_a8/}
}
TY  - JOUR
AU  - N. V. Banichuk
AU  - S. Yu. Ivanova
AU  - V. S. Afanas'ev
TI  - Nonstationary transversal vibrations of thermoelastic web with a constant velocity motion
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 78
EP  - 83
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_11_a8/
LA  - ru
ID  - IVM_2017_11_a8
ER  - 
%0 Journal Article
%A N. V. Banichuk
%A S. Yu. Ivanova
%A V. S. Afanas'ev
%T Nonstationary transversal vibrations of thermoelastic web with a constant velocity motion
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 78-83
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_11_a8/
%G ru
%F IVM_2017_11_a8
N. V. Banichuk; S. Yu. Ivanova; V. S. Afanas'ev. Nonstationary transversal vibrations of thermoelastic web with a constant velocity motion. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 78-83. http://geodesic.mathdoc.fr/item/IVM_2017_11_a8/

[1] Banichuk N., Jeronen J., Neittaamäki P., Saksa T., Tuovinen T., Mechanics of moving materials, Sol. Mech. and its Appl., 207, Springer, Cham, 2014 | DOI | MR | Zbl

[2] Sack R. A., “Transvers oscillations in travelling strings”, British J. Appl. Phys., 5:6 (1954), 224–226 | DOI

[3] Archibald F. R., Emslie A. G., “The vibration of a string having a uniform motion along its length”, ASME J. Appl. Mech., 25:3 (1958), 347–348 | Zbl

[4] Mote C. D., “Dynamic stability of an axially moving band”, J. Franklin Institute, 285:5 (1968), 329–346 | DOI | Zbl

[5] Simpson A., “Transvers modes and frequencies of beams translating between fixed end supports”, J. Mech. Eng. Sci., 15:3 (1973), 159–164 | DOI

[6] Lin C. C., Mote C. D., “Equilibrium displacement and stress distribution in a two-dimensional, axially moving web under transverse loading”, ASME J. Appl. Mech., 62:3 (1995), 772–779 | DOI | Zbl

[7] Lin C. C., “Stability and vibration characteristics of axially moving plates”, Int. J. Solid Struc., 34:24 (1997), 3179–3190 | DOI | Zbl

[8] Banichuk N., Jeronen J., Neittaanmäki P., Tuovinen T., “On the instability of an axially moving elastic plate”, Int. J. Solid Struc., 47:1 (2010), 91–99 | DOI | Zbl

[9] Banichuk N., Jeronen J., Neittaanmäki P., Tuovinen T., “Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid”, J. Fluid Struc., 26:2 (2010), 274–291 | DOI

[10] Timoshenko S. P., Voinovskii-Kriger S., Plastinki i obolochki, Nauka, M., 1966

[11] Kovalenko A. D., Termouprugost, “Vischa Shkola”, Kiev, 1975