On power smooth numbers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 60-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

A natural number $n$ is called the $y$-power smooth for some positive number $y$ if every prime power dividing $n$ is bounded from above by the number $y$. Let us denote by $\psi^*(x,y)$ the amount of $y$-power smooth integers in the range from $0$ to $x$. In this paper we investigate the function $\psi^*(x,y)$ and $y$-power smooth numbers in general. We derive formulas for finding exact calculation of $\psi^*(x,y)$ for large $x$ and relatively small $y$, and give theoretical estimates for this function and for function of the greatest powersmooth number. This results can be used in the cryptography and number theory to estimate the convergence of the factorization algorithms.
Keywords: smooth integers, powersmooth integers, factorization, estimates for cryptographic algorithms, Lenstra elliptic curve factorization method, Pollard's $(p-1)$-factorization algorithm
Mots-clés : RSA.
@article{IVM_2017_11_a6,
     author = {F. F. Sharifullina},
     title = {On power smooth numbers},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--67},
     publisher = {mathdoc},
     number = {11},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_11_a6/}
}
TY  - JOUR
AU  - F. F. Sharifullina
TI  - On power smooth numbers
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 60
EP  - 67
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_11_a6/
LA  - ru
ID  - IVM_2017_11_a6
ER  - 
%0 Journal Article
%A F. F. Sharifullina
%T On power smooth numbers
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 60-67
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_11_a6/
%G ru
%F IVM_2017_11_a6
F. F. Sharifullina. On power smooth numbers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 60-67. http://geodesic.mathdoc.fr/item/IVM_2017_11_a6/

[1] Lenstra H. W. jr., “Factoring integers whith elliptic curves”, Ann. Math., 126:2 (1987), 649–673 | DOI | MR | Zbl

[2] Ishmukhametov Sh.T., Sharifullina F. F., “An algorithm for counting smooth integers”, Lobachevskii J. Math., 37:2 (2016), 128–137 | DOI | MR | Zbl

[3] Sharifullina F. F., Ishmukhametov Sh. T., “About powersmooth numbers”, Reseach J. Appl. Sci., 10:8 (2015), 381–384

[4] Crandall R., Pomerance C., Prime numbers: a computational perspective, Springer-Verlag, Berlin, 2005 | MR | Zbl

[5] Ishmukhametov Sh. T., Metody faktorizatsii naturalnykh chisel, Kazansk. un-t, Kazan, 2011

[6] Nesterenko Yu. V., Teoriya chisel, Akademiya, M., 2008

[7] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR