Localization of boundaries for subsets of discontinuity points of noisy function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 13-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider ill-posed problem of localization of discontinuities of the first kind of function in one variable under condition that in metric $L_2$ there are given approximately measured function and a level of inaccuracy. We propose a new statement of the problem when all discontinuities can be divided into subsets and localization is performed for subsets of discontinuities. Under additional assumption that all discontinuities possess jumps of one sign we construct new regular method which admits to determine a number of subsets of discontinuities and to approximate their boundaries with estimation of approximation accuracy.
Keywords: ill-posed problem, regularizing algorithm, discontinuity of the first kind, subsets of discontinuity points, localization of boundaries of subsets of singularities, separability threshold.
@article{IVM_2017_11_a1,
     author = {A. L. Ageev and T. V. Antonova},
     title = {Localization of boundaries for subsets of discontinuity points of noisy function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--19},
     publisher = {mathdoc},
     number = {11},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_11_a1/}
}
TY  - JOUR
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - Localization of boundaries for subsets of discontinuity points of noisy function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 13
EP  - 19
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_11_a1/
LA  - ru
ID  - IVM_2017_11_a1
ER  - 
%0 Journal Article
%A A. L. Ageev
%A T. V. Antonova
%T Localization of boundaries for subsets of discontinuity points of noisy function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 13-19
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_11_a1/
%G ru
%F IVM_2017_11_a1
A. L. Ageev; T. V. Antonova. Localization of boundaries for subsets of discontinuity points of noisy function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 13-19. http://geodesic.mathdoc.fr/item/IVM_2017_11_a1/

[1] Winkler G., Wittich O., Liebsher V., Kempe A., “Don't shed tears over breaks”, Jahresber. Deutsch. Math.-Verein., 107:2 (2005), 57–87 | MR | Zbl

[2] Sizikov V. S., Matematicheskie metody obrabotki rezultatov izmerenii, Politekhnika, SPb., 2001

[3] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005

[4] Ya. A. Furman (red.), Vvedenie v konturnyi analiz i ego prilozheniya k obrabotke izobrazhenii i signalov, Fizmatlit, M., 2002

[5] Ageev A. L., Antonova T. V., “O novom klasse nekorrektno postavlennykh zadach”, Izv. Uralsk. gos. un-ta, Matematika. Mekhanika. Infomatika, 58:11 (2008), 24–42 | Zbl

[6] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974

[7] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[8] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, VSP, Utrecht, the Netherlands, 1995 | MR | Zbl

[9] Antonova T. V., “Vosstanovlenie funktsii s konechnym chislom razryvov $1$ roda po zashumlennym dannym”, Izv. vuzov. Matem., 2001, no. 7, 65–68

[10] Antonova T. V., “Solving equations of the first kind on classes of functions with singularities”, Mathematical Programming. Regularization and Approximation, Proc. Steklov Inst. Math., 2002, 145–189 | MR

[11] Ageev A. L., Antonova T. V., “O zadache razdeleniya osobennostei”, Izv. vuzov. Matem., 2007, no. 11, 3–9

[12] Ageev A. L., Antonova T. V., “Regulyariziruyuschie algoritmy vydeleniya razryvov v nekorrektnykh zadachakh”, Zhurn. vychisl. matem. i matem. fiz., 48:8 (2008), 1362–1370 | MR | Zbl

[13] Antonova T. V., “Novye metody lokalizatsii razryvov zashumlennoi funktsii”, Sib. zhurn. vychisl. matem., 13:4 (2010), 375–386 | MR | Zbl

[14] Ageev A. L., Antonova T. V., “O nekorrektno postavlennykh zadachakh lokalizatsii osobennostei”, Tr. in-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 30–45 | Zbl

[15] Ageev A. L., Antonova T. V., “O lokalizatsii razryvov pervogo roda dlya funktsii ogranichennoi variatsii”, Tr. in-ta matematiki i mekhaniki UrO RAN, 18, no. 1, 2012, 56–68

[16] Ageev A. L., Antonova T. V., “New methods for the localization of discontinuities of the first kind for functions of bounded variation”, J. Inverse and Ill-Posed Problems, 21:2 (2013), 177–191 | DOI | MR | Zbl

[17] Oudshoorn C. G.M., “Asymptotically minimax estimation of a function with jumps”, Bernoulli, 4:1 (1998), 15–33 | DOI | MR | Zbl

[18] Korostelev A. P., “O minimaksnom otsenivanii razryvnogo signala”, Teor. veroyatn. i ee primenenie, 32:4 (1987), 796–799 | Zbl