Mots-clés : symbol
@article{IVM_2017_11_a0,
author = {O. G. Avsyankin},
title = {Volterra type integral operators with homogeneous kernels in weighted $L_p$-spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--12},
year = {2017},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_11_a0/}
}
O. G. Avsyankin. Volterra type integral operators with homogeneous kernels in weighted $L_p$-spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2017_11_a0/
[1] Karapetiants N. K., Samko S. G., Equations with Involutive Operators, Birkhäuser, Boston–Basel–Berlin, 2001 | MR | Zbl
[2] Avsyankin O. G., Miroshnikova E. I., “Mnogomernye integralnye operatory s odnorodnymi yadrami v $L_p$-prostranstvakh s polumultiplikativnym vesom”, Izv. vuzov. Severo-Kavkazsk. region. Estestv. nauki, 2010, no. 5, 5–8
[3] Avsyankin O. G., Peretyatkin F. G., “Ob ogranichennosti i kompaktnosti mnogomernykh integralnykh operatorov s odnorodnymi yadrami”, Izv. vuzov. Matem., 2013, no. 11, 64–68 | Zbl
[4] Avsyankin O. G., “Proektsionnyi metod dlya integralnykh operatorov s odnorodnymi yadrami, vozmuschennykh odnostoronnimi multiplikativnymi sdvigami”, Izv. vuzov. Matem., 2015, no. 2, 10–17
[5] Avsyankin O. G., “Mnogomernye integralnye operatory s odnorodnymi yadrami i koeffitsientami, ostsilliruyuschimi na beskonechnosti”, Differents. uravneniya, 51:9 (2015), 1174–1181 | DOI | MR | Zbl
[6] Mikhailov L. G., Novyi klass osobykh integralnykh uravnenii i ego primeneniya k differentsialnym uravneniyam s singulyarnymi koeffitsientami, Tr. AN Tadzh. SSR, 1, Dushanbe, 1963 | MR
[7] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960
[8] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1984