Volterra type integral operators with homogeneous kernels in weighted $L_p$-spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the multidimensional integral Volterra type operators with homogeneous of degree $(-n)$ kernels, acting in $L_p$-spaces with submultiplicative weight. For these operators we obtain the necessary and sufficient conditions of invertibility. Besides, we describe the Banach algebra generated by these operators. For this algebra we construct the symbolic calculus, in terms of which we obtain the invertibility criterion of operators.
Keywords: integral operator, homogeneous kernel, invertibility, Banach algebra, spherical harmonics.
Mots-clés : symbol
@article{IVM_2017_11_a0,
     author = {O. G. Avsyankin},
     title = {Volterra type integral operators with homogeneous kernels in weighted $L_p$-spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {11},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_11_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - Volterra type integral operators with homogeneous kernels in weighted $L_p$-spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 3
EP  - 12
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_11_a0/
LA  - ru
ID  - IVM_2017_11_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T Volterra type integral operators with homogeneous kernels in weighted $L_p$-spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 3-12
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_11_a0/
%G ru
%F IVM_2017_11_a0
O. G. Avsyankin. Volterra type integral operators with homogeneous kernels in weighted $L_p$-spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2017_11_a0/

[1] Karapetiants N. K., Samko S. G., Equations with Involutive Operators, Birkhäuser, Boston–Basel–Berlin, 2001 | MR | Zbl

[2] Avsyankin O. G., Miroshnikova E. I., “Mnogomernye integralnye operatory s odnorodnymi yadrami v $L_p$-prostranstvakh s polumultiplikativnym vesom”, Izv. vuzov. Severo-Kavkazsk. region. Estestv. nauki, 2010, no. 5, 5–8

[3] Avsyankin O. G., Peretyatkin F. G., “Ob ogranichennosti i kompaktnosti mnogomernykh integralnykh operatorov s odnorodnymi yadrami”, Izv. vuzov. Matem., 2013, no. 11, 64–68 | Zbl

[4] Avsyankin O. G., “Proektsionnyi metod dlya integralnykh operatorov s odnorodnymi yadrami, vozmuschennykh odnostoronnimi multiplikativnymi sdvigami”, Izv. vuzov. Matem., 2015, no. 2, 10–17

[5] Avsyankin O. G., “Mnogomernye integralnye operatory s odnorodnymi yadrami i koeffitsientami, ostsilliruyuschimi na beskonechnosti”, Differents. uravneniya, 51:9 (2015), 1174–1181 | DOI | MR | Zbl

[6] Mikhailov L. G., Novyi klass osobykh integralnykh uravnenii i ego primeneniya k differentsialnym uravneniyam s singulyarnymi koeffitsientami, Tr. AN Tadzh. SSR, 1, Dushanbe, 1963 | MR

[7] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960

[8] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1984