Analysis of nonautonomous systems of ordinary differential equations with exponentially periodic matrix
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 62-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a class of nonautonomous systems of ordinary differential equations whose matrix can be characterized as exponentially periodic. We develop the algorithm of spectral analysis of these systems. By this algorithm we prove reducibility theorems. The proposed algorithm is based on the splitting method that allows to reduce considered systems to simpler systems with quasi-diagonal matrix and formulate constructive conditions of solutions stability.
Keywords: nonautonomous systems of ordinary differential equations, exponentially periodic matrix, quasi-reducibility, splitting method, stability.
@article{IVM_2017_10_a6,
     author = {Yu. A. Konyaev and D. A. Maslov},
     title = {Analysis of nonautonomous systems of ordinary differential equations with exponentially periodic matrix},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--69},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_10_a6/}
}
TY  - JOUR
AU  - Yu. A. Konyaev
AU  - D. A. Maslov
TI  - Analysis of nonautonomous systems of ordinary differential equations with exponentially periodic matrix
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 62
EP  - 69
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_10_a6/
LA  - ru
ID  - IVM_2017_10_a6
ER  - 
%0 Journal Article
%A Yu. A. Konyaev
%A D. A. Maslov
%T Analysis of nonautonomous systems of ordinary differential equations with exponentially periodic matrix
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 62-69
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_10_a6/
%G ru
%F IVM_2017_10_a6
Yu. A. Konyaev; D. A. Maslov. Analysis of nonautonomous systems of ordinary differential equations with exponentially periodic matrix. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 62-69. http://geodesic.mathdoc.fr/item/IVM_2017_10_a6/

[1] Zhabko A. P., Myshkov S. K., “K voprosu ob asimptoticheskoi ustoichivosti lineinykh nestatsionarnykh sistem”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2015, no. 2, 166–175

[2] Sang Il Choi, Yoon Hoe Goo, “Lipschitz and asymptotic stability of nonlinear systems of perturbed differential equations”, Korean J. Math., 23:1 (2015), 181–197 | DOI | MR

[3] Necdet Bildik, Sinan Deniz, “On the asymptotic stability of some particular differential equations”, International J. Appl. Physics and Math., 5:4 (2015), 252–258 | DOI

[4] Myroslav K. Sparavalo, Lyapunov functions in nonlinear unsteady dynamics and control: Poincaré's approach from metaphysical theory to down-to-earth practice, New York, 2016

[5] Konyaev Yu. A., “O nekotorykh metodakh issledovaniya ustoichivosti”, Matem. sb., 192:3 (2001), 65–82 | DOI | Zbl

[6] Konyaev Yu. A., Asimptoticheskie i analiticheskie metody resheniya nekotorykh klassov prikladnykh modelnykh zadach, Izd-vo RUDN, M., 2005

[7] Konyaev Yu. A., Nguen Vet Khoa, “Spektralnyi analiz nekotorykh klassov neavtonomnykh sistem s periodicheskoi i polinomialno periodicheskoi matritsami”, Vestn. Nats. issledovatelsk. yadernogo un-ta MIFI, 3:3 (2014), 290–296 | DOI

[8] Konyaev Yu. A., Martynenko Yu. G., “Asimptoticheskii analiz reshenii differentsialnykh uravnenii s polinomialno periodicheskimi koeffitsientami”, Izv. vuzov. Matem., 2006, no. 1, 78–81 | Zbl

[9] Konyaev Yu. A., Mikhailov D. V., Mergiya V. B., “Analiz malykh kolebanii mikromekhanicheskogo giroskopa (MMG) na vibratsionnom osnovanii”, Matem. modelirovanie, 24:5 (2012), 61–64 | Zbl

[10] Konyaev Y. A., Mikhailov D. V., Romanova E. Y., “Asymptotic analysis of a model gyro system”, Diff. Equat., 49:6 (2013), 760–764 | DOI | MR | Zbl

[11] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Izd-vo MGU, M., 1998

[12] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[13] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1986 | MR

[14] Konyaev Yu. A., “Metod unitarnykh preobrazovanii v teorii ustoichivosti”, Izv. vuzov. Matem., 2002, no. 2, 41–45

[15] Gavrilov N. I., “Ob ustoichivosti po Lyapunovu sistem lineinykh uravnenii”, DAN SSSR, 84 (1952), 425–428 | Zbl

[16] Gavrilov N. I., “Ob ustoichivosti po Lyapunovu pri nalichii kharakteristicheskikh chisel, ravnykh nulyu”, Matem. sb., 41:83 (1957), 7–22 | Zbl