Linear differential second-order equations in Banach space and splitting of operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 38-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear differential second order equation in complex Banach space with bounded operator coefficients. We study the question of existence of bounded on the whole real axis solutions (with bounded right-hand side) and their asymptotic behaviour. The research is conducted in case of separated roots of the corresponding algebraic operator equation or providing that the norm of operator, placed in front of the first derivative in the equation, is small. In the latter case we apply the method of similar operators (operator splitting theorem). The main results are obtained with the use of the theorems on similarity transformation of second order operator matrix to a block-diagonal one.
Keywords: Banach space, differential second-order equation, the method of similar operators, operators splitting.
@article{IVM_2017_10_a4,
     author = {A. G. Baskakov and T. K. Katsaran and T. I. Smagina},
     title = {Linear differential second-order equations in {Banach} space and splitting of operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {38--49},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_10_a4/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - T. K. Katsaran
AU  - T. I. Smagina
TI  - Linear differential second-order equations in Banach space and splitting of operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 38
EP  - 49
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_10_a4/
LA  - ru
ID  - IVM_2017_10_a4
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A T. K. Katsaran
%A T. I. Smagina
%T Linear differential second-order equations in Banach space and splitting of operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 38-49
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_10_a4/
%G ru
%F IVM_2017_10_a4
A. G. Baskakov; T. K. Katsaran; T. I. Smagina. Linear differential second-order equations in Banach space and splitting of operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 38-49. http://geodesic.mathdoc.fr/item/IVM_2017_10_a4/

[1] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970

[2] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[3] Khenri D., Geometricheskaya teoriya polulineinykh algebraicheskikh uravnenii, Mir, M., 1985 | MR

[4] Levitan B. M., Zhikov V. B., Pochti periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978

[5] Baskakov A. G., “Polugruppy raznostnykh operatorov v spektralnom analize lineinykh differentsialnykh operatorov”, Funkts. analiz i ego prilozh., 30:3 (1996), 1–11 | DOI

[6] Baskakov A. G., “Lineinye differentsialnye operatory s neogranichennymi operatornymi koeffitsientami i polugruppy raznostnykh operatorov”, Matem. zametki., 59:6 (1996), 586–593 | DOI | Zbl

[7] Baskakov A. G., “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1 (2013), 77–128 | DOI | Zbl

[8] Krein M. G., Langer G. K., “O nekotorykh matematicheskikh printsipakh lineinoi teorii dempfirovannykh kolebanii kontinuuma”, Prilozhenie teorii funktsii v mekhanike sploshnoi sredy, Tr. Mezhdunar. simpoziuma v Tbilisi, v. 2, Nauka, M., 1965, 283–322 | Zbl

[9] Markus A. S., Mereutsa I. V., “O polnom nabore kornei operatornogo uravneniya, sootvetstvuyuschego polinomialnomu puchku”, Izv. AN SSSR. Ser. matem., 37:5 (1973), 1108–1131

[10] Baskakov A. G., “Garmonicheskii i spektralnyi analiz operatorov s ogranichennymi stepenyami i ogranichennykh polugrupp operatorov na banakhovom prostranstve”, Matem. zametki, 97:2 (2015), 174–190 | DOI | Zbl

[11] Baskakov A. G., Kaluzhina N. S., Polyakov D. M., “Medlenno menyayuschiesya na beskonechnosti polugruppy operatorov”, Izv. vuzov. Matem., 2014, no. 7, 3–14 | Zbl

[12] Baskakov A. G., Kaluzhina N. S., “Teorema Berlinga dlya funktsii s suschestvennym spektrom iz odnorodnykh prostranstv i stabilizatsiya reshenii parabolicheskikh uravnenii”, Matem. zametki, 92:5 (2012), 643–661 | DOI | Zbl

[13] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. matem. zhurn., 24:1 (1983), 21–39

[14] Baskakov A. G., “Teorema o rasscheplenii operatora i nekotorye smezhnye voprosy analiticheskoi teorii vozmuschenii”, Izv. AN SSSR. Ser. matem., 50:3 (1986), 435–457 | MR

[15] Baskakov A. G., “Spektralnyi analiz vozmuschennykh nekvazianaliticheskikh i spektralnykh operatorov”, Izvestiya RAN. Ser. matem., 58:4 (1994), 3–32

[16] Baskakov A. G., Derbushev A. I., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize samosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. matem., 75:3 (2011), 3–28 | DOI

[17] Baskakov A. G., Polyakov D. M., “Metod podobnykh operatorov v spektralnom analize operatora Khilla s negladkim potentsialom”, Matem. sb., 208:1 (2017), 3–47 | DOI | Zbl