From the integral estimates of functions to uniform and locally averaged
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 15-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of pointwise estimates from above of a function or its averages often arise in the function theory under known integral restrictions on the growth of this function. We offer an approach to such problems based on the integral Jensen inequality with the convex function.
Keywords: holomorphic function, average value, convex function, (pluri-)subharmonic function, $\overline\partial$-problem, integral Jensen's inequality, measure space.
@article{IVM_2017_10_a2,
     author = {R. A. Baladai and B. N. Khabibullin},
     title = {From the integral estimates of functions to uniform and locally averaged},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--25},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_10_a2/}
}
TY  - JOUR
AU  - R. A. Baladai
AU  - B. N. Khabibullin
TI  - From the integral estimates of functions to uniform and locally averaged
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 15
EP  - 25
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_10_a2/
LA  - ru
ID  - IVM_2017_10_a2
ER  - 
%0 Journal Article
%A R. A. Baladai
%A B. N. Khabibullin
%T From the integral estimates of functions to uniform and locally averaged
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 15-25
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_10_a2/
%G ru
%F IVM_2017_10_a2
R. A. Baladai; B. N. Khabibullin. From the integral estimates of functions to uniform and locally averaged. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 15-25. http://geodesic.mathdoc.fr/item/IVM_2017_10_a2/

[1] Abanin A. V., “O nekotorykh priznakakh slaboi dostatochnosti”, Matem. zametki, 40:4 (1986), 442–454 | Zbl

[2] Abanin A. V., “O prodolzhenii i ustoichivosti slabo dostatochnykh mnozhestv”, Izv. vuzov. Matem., 1987, no. 4, 3–10

[3] Abanin A. V., Slabo dostatochnye mnozhestva i absolyutno predstavlyayuschie sistemy, Diss. ... dokt. fiz.-matem. nauk, RGU, Rostov-na-Donu, 1995

[4] Bierstedt K. D., Bonet J., Taskinen J., “Associated weights and spaces of holomorphic functions”, Studia Math., 127 (1998), 137–168 | MR | Zbl

[5] Baiguskarov T. Yu., Khabibullin B. N., “Golomorfnye minoranty plyurisubgarmonicheskikh funktsii”, Funkts. analiz i ego prilozh., 50:1 (2016), 76–79 | DOI | MR

[6] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN. Ser. matem., 65:5 (2001), 167–190 | DOI | Zbl

[7] Epifanov O. V., “Razreshimost uravneniya Koshi–Rimana s ogranicheniyami rosta funktsii i vesovaya approksimatsiya analiticheskikh funktsii”, Izv. vuzov. Matem., 1990, no. 2, 49–52

[8] Epifanov O. V., “O razreshimosti neodnorodnogo uravneniya Koshi–Rimana v klassakh funktsii, ogranichennykh s vesom i sistemoi vesov”, Matem. zametki, 51:1 (1992), 83–92 | MR | Zbl

[9] Baiguskarov T. Yu., Talipova G. R., Khabibullin B. N., “Podposledovatelnosti nulei dlya klassov tselykh funktsii eksponentsialnogo tipa, vydelyaemykh ogranicheniyami na ikh rost vdol veschestvennoi osi”, Algebra i analiz, 28:2 (2016), 1–33

[10] Khabibullin B. N., Baiguskarov T. Yu., “Logarifm modulya golomorfnoi funktsii kak minoranta dlya subgarmonicheskoi funktsii”, Matem. zametki, 99:4 (2016), 588–602 | DOI | Zbl

[11] Ortega-Cerdá J., “Multipliers and weighted $\overline{\partial}$-estimates”, Rev. Mat. Iberoamericana, 18 (2002), 355–377 | DOI | MR | Zbl

[12] Niculescu C. P., “An extension of Chebyshev's inequality and its connection with Jensen's inequality”, J. Inequal. Appl., 6:4 (2001), 451–462 | MR | Zbl

[13] Niculescu C. P., Persson L.-E., Convex functions and their applications. A contemporary approach, CMS Books in Math., 23, Springer-Verlag, New York, 2006 | DOI | MR | Zbl

[14] Pavić Z., Pečarić J., Perić I., “Integral, discrete and functional variants of Jensen's inequality”, J. Math. Inequal., 5:2 (2011), 253–264 | DOI | MR | Zbl

[15] Horváth L., “A refinement of the integral form of Jensen's inequality”, J. Inequal. Appl., 2012:178 (2012), 1–19 | MR

[16] Abramovich Sh., Persson L.-E., “Some new estimates of the “Jensen gap””, J. Inequal. Appl., 2016:39 (2016), 1–9 | MR | Zbl

[17] Zhu K., Analysis on Fock spaces, Graduate Texts in Mathematics, 263, Springer-Verlag, 2012 | DOI | MR | Zbl

[18] Khalmosh P., Teoriya mery, In. lit., M., 1953

[19] Bogachev V. I., Osnovy teorii mery, v. 1, 2-e izd., NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2006

[20] Bogachev V. I., Osnovy teorii mery, v. 2, 2-e izd., NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2006

[21] Burbaki N., Funktsii deistvitelnogo peremennogo, Nauka, M., 1965

[22] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966

[23] Pečarić J. E., Proschan A., Tong Y. L., Convex functions, partial orderings, and statistical applications, Academic Press, London, 1992 | MR

[24] Lib E., Loss M., Analiz, Nauchnaya kniga, Novosibirsk, 1998

[25] Hörmander L., Notions of convexity, Birkhäser, Boston, 1994 | MR | Zbl