Cocyclic $n$-groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 89-93

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all cocyclic $n$-groups and the structure of $(n, 2)$-rings of endomorphisms of cocyclic $n$-groups. We prove that a cocyclic $n$-group is defined uniquely by its $(n, 2)$-ring of endomorphisms.
Keywords: abelian $n$-group, cocyclic $n$-group, $(n,2)$-ring of endomorphisms.
@article{IVM_2017_10_a10,
     author = {N. A. Shchuchkin},
     title = {Cocyclic $n$-groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--93},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_10_a10/}
}
TY  - JOUR
AU  - N. A. Shchuchkin
TI  - Cocyclic $n$-groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 89
EP  - 93
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_10_a10/
LA  - ru
ID  - IVM_2017_10_a10
ER  - 
%0 Journal Article
%A N. A. Shchuchkin
%T Cocyclic $n$-groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 89-93
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_10_a10/
%G ru
%F IVM_2017_10_a10
N. A. Shchuchkin. Cocyclic $n$-groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 89-93. http://geodesic.mathdoc.fr/item/IVM_2017_10_a10/