Cocyclic $n$-groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 89-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all cocyclic $n$-groups and the structure of $(n, 2)$-rings of endomorphisms of cocyclic $n$-groups. We prove that a cocyclic $n$-group is defined uniquely by its $(n, 2)$-ring of endomorphisms.
Keywords: abelian $n$-group, cocyclic $n$-group, $(n,2)$-ring of endomorphisms.
@article{IVM_2017_10_a10,
     author = {N. A. Shchuchkin},
     title = {Cocyclic $n$-groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--93},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_10_a10/}
}
TY  - JOUR
AU  - N. A. Shchuchkin
TI  - Cocyclic $n$-groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 89
EP  - 93
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_10_a10/
LA  - ru
ID  - IVM_2017_10_a10
ER  - 
%0 Journal Article
%A N. A. Shchuchkin
%T Cocyclic $n$-groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 89-93
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_10_a10/
%G ru
%F IVM_2017_10_a10
N. A. Shchuchkin. Cocyclic $n$-groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 89-93. http://geodesic.mathdoc.fr/item/IVM_2017_10_a10/

[1] Galmak A. M., $n$-arnye gruppy, v. I, Gomelskii gos. un-t im. F. Skoriny, Gomel, 2003

[2] Post E. L., “Polyadic groups”, Trans. Amer. Math. Soc., 48 (1940), 208–350 | DOI | MR

[3] Rusakov S. A., Algebraicheskie $n$-arnye sistemy, Navuka i tekhnika, Minsk, 1992

[4] Rusakov S. A., Nekotorye prilozheniya teorii $n$-arnykh grupp, Belarusk. navuka, Minsk, 1998

[5] Timm J., Kommutative $n$-Gruppen, Diss., Hamburg, 1967

[6] Galmak A. M., “Poliadicheskie analogi teorem Keli i Birkgofa”, Izv. vuzov. Matem., 2001, no. 2, 13–18

[7] Glazek K., Michalski J., Sierocki A. I., “On evaluation of some polyadic groups”, Contributions to General Algebra, 3 (1985), 159–171 | MR

[8] Schuchkin N. A., “Polutsiklicheskie $n$-arnye gruppy”, Izv. GGU im. F. Skoriny, 2009, no. 3(54), 186–194

[9] Schuchkin N. A., “Podgruppy v polutsiklicheskikh $n$-arnykh gruppakh”, Fundamentalnaya i prikl. matem., 15:2 (2009), 211–222

[10] Galmak A. M., Schuchkin N. A., “Tsiklicheskie $n$-arnye gruppy i ikh obobscheniya”, Probl. fiziki, matem. i tekhn., 2:19 (2014), 46–53

[11] Schuchkin N. A., “Stroenie konechnykh abelevykh $n$-arnykh grupp”, Diskretnaya matem., 26:3 (2014), 144–159 | DOI

[12] Schuchkin N. A., “Svobodnye abelevy $n$-arnye gruppy”, Chebyshevskii sb., 12:2 (2011), 163–170 | Zbl

[13] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[14] Kurosh A. G., Obschaya algebra. Lektsii $1969$–$70$ uchebnogo goda, Nauka, M., 1974

[15] Glazek K. Gleichgewicht B., “Abelian $n$-groups”, Colloquia Math. Soc. J. Bolyai, 29 (1977), 321–329 | MR

[16] Crombez G., “On $(n,m)$-rings”, Abh. Math. Sem. Univ. Hamburg, 37 (1972), 180–199 | DOI | MR | Zbl

[17] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977

[18] Khodabandekh Kh., Shakhryari M., “Prostye poliadicheskie gruppy”, Sib. matem. zhurn., 55:4 (2014), 898–911 | MR