Partition of a unity on infinite-dimensional manifold of the Lipschitz class~$\mathrm{Lip}^k$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 8-14
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a critrion of $\mathrm{Lip}^k$-paracompactness of infinite-dimensional manifold $M$ modeled in nonnormable topological Fréchet vector space $F$. We establish that for $\mathrm{Lip}^k$-paracompactness it is necessary and sufficcient for the space of models $F$ to be paracompact and $\mathrm{Lip}^k$-normal. We prove suffcient condition of existence of $\mathrm{Lip}^k$-partition of unity on a manifold of class $\mathrm{Lip}^k$.
Keywords:
infinite-dimensional manifold, paracompactness, partition of unity, convenient topological vector spaces, nonnormable Fréchet spaces.
@article{IVM_2017_10_a1,
author = {Z. D. Al-Nafie},
title = {Partition of a unity on infinite-dimensional manifold of the {Lipschitz} class~$\mathrm{Lip}^k$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {8--14},
publisher = {mathdoc},
number = {10},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_10_a1/}
}
TY - JOUR
AU - Z. D. Al-Nafie
TI - Partition of a unity on infinite-dimensional manifold of the Lipschitz class~$\mathrm{Lip}^k$
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 2017
SP - 8
EP - 14
IS - 10
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/IVM_2017_10_a1/
LA - ru
ID - IVM_2017_10_a1
ER -
Z. D. Al-Nafie. Partition of a unity on infinite-dimensional manifold of the Lipschitz class~$\mathrm{Lip}^k$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 8-14. http://geodesic.mathdoc.fr/item/IVM_2017_10_a1/