Partition of a unity on infinite-dimensional manifold of the Lipschitz class~$\mathrm{Lip}^k$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 8-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a critrion of $\mathrm{Lip}^k$-paracompactness of infinite-dimensional manifold $M$ modeled in nonnormable topological Fréchet vector space $F$. We establish that for $\mathrm{Lip}^k$-paracompactness it is necessary and sufficcient for the space of models $F$ to be paracompact and $\mathrm{Lip}^k$-normal. We prove suffcient condition of existence of $\mathrm{Lip}^k$-partition of unity on a manifold of class $\mathrm{Lip}^k$.
Keywords: infinite-dimensional manifold, paracompactness, partition of unity, convenient topological vector spaces, nonnormable Fréchet spaces.
@article{IVM_2017_10_a1,
     author = {Z. D. Al-Nafie},
     title = {Partition of a unity on infinite-dimensional manifold of the {Lipschitz} class~$\mathrm{Lip}^k$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {8--14},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_10_a1/}
}
TY  - JOUR
AU  - Z. D. Al-Nafie
TI  - Partition of a unity on infinite-dimensional manifold of the Lipschitz class~$\mathrm{Lip}^k$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 8
EP  - 14
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_10_a1/
LA  - ru
ID  - IVM_2017_10_a1
ER  - 
%0 Journal Article
%A Z. D. Al-Nafie
%T Partition of a unity on infinite-dimensional manifold of the Lipschitz class~$\mathrm{Lip}^k$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 8-14
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_10_a1/
%G ru
%F IVM_2017_10_a1
Z. D. Al-Nafie. Partition of a unity on infinite-dimensional manifold of the Lipschitz class~$\mathrm{Lip}^k$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 8-14. http://geodesic.mathdoc.fr/item/IVM_2017_10_a1/

[1] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967

[2] Al Nafie Zakhir Dobeas, Klimentov S. B., “O parakompaktnosti beskonechnomernykh mnogoobrazii”, Izv. vuzov. Severo-kavkazsk. region, 2014, no. 2(180), 5–7

[3] Frelikher A., Bukhir V., Differentsialnoe ischislenie v vektornykh prostranstvakh bez normy, Mir, M., 1970 | MR

[4] Frolicher A., Kriegl A., Linear spaces and differentiation theory, Pure and Appl. Math., J. Wiley, Chichester, 1988 | MR | Zbl

[5] Jarchow H., Locally convex spaces, Springer Sci. and Business Media, 2012 | MR

[6] Frolicher A., “Smooth structures”, Category theory, Lecture Notes Math., Springer, Berlin–Heidelberg, 1982, 69–81 | DOI | MR

[7] Engelking R., Obschaya topologiya, Mir, M., 1986