Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_9_a9, author = {A. M. Kamalutdinov and V. N. Paimushin}, title = {Refined geometrically nonlinear equations of motion for elongated rod-type plate}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {84--89}, publisher = {mathdoc}, number = {9}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_9_a9/} }
TY - JOUR AU - A. M. Kamalutdinov AU - V. N. Paimushin TI - Refined geometrically nonlinear equations of motion for elongated rod-type plate JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 84 EP - 89 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_9_a9/ LA - ru ID - IVM_2016_9_a9 ER -
A. M. Kamalutdinov; V. N. Paimushin. Refined geometrically nonlinear equations of motion for elongated rod-type plate. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 84-89. http://geodesic.mathdoc.fr/item/IVM_2016_9_a9/
[1] Standard test method for measuring vibration damping properties of materials, ASTM E-756, Amer. Soc. for Testing and Materials, 2004
[2] Paimushin V. N., Firsov V. A., Gyunal I., Egorov A. G., “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 1. Experimental basis”, Mechanics of Composite Materials, 50:2 (2014), 127–136 | DOI
[3] Egorov A. G., Kamalutdinov A. M., Nuriev A. N., Paimushin V. N., “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 2. Aerodynamic Component of Damping”, Mechanics of Composite Materials, 50:3 (2014), 267–275 | DOI
[4] Paimushin V. N., Firsov V. A., Gyunal I., Shishkin V. M., “Identification of the elasticity and damping of a fiberglass based on a study of dying flexural vibrations of test samples”, Mechanics of Composite Materials, 51:3 (2015), 285–300 | DOI
[5] Paimushin V. N., Shalashilin V. I., “Consistent variant of continuum deformation theory in the quadratic approximation”, Dokl. Phys., 49:6 (2004), 374–377 | DOI | MR
[6] Paimushin V. N., Shalashilin V. I., “On square approximations of the deformation theory and problems of constructing improved versions of geometrical non-linear theory of multylayer construction elements”, J. Appl. Math. Mech., 69:5 (2005), 861–881 | DOI | MR
[7] Paimushin V. N., “Problems of geometric non-linearity and stability in the mechanics of thin shells and rectilinear columns”, J. Appl. Math. Mech., 71:5 (2007), 772–805 | DOI | MR