Refined geometrically nonlinear equations of motion for elongated rod-type plate
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 84-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive new refined geometrically nonlinear equations of motion for elongated rod-type plates. They are based on the proposed earlier relationships of geometrically nonlinear theory of elasticity in the case of small deformations and refined S. P. Timoshenko's shear model. These equations allow to describe the high-frequency torsional oscillation of elongated rod-type plate formed in them when plate performs low-frequency flexural vibrations. By limit transition to the classical model of rod theory we carry out transformation of derived equations to simplified system of equations of lower degree.
Keywords: elongated rod-type plate, equations of elasticity theory, kinematic relationships in the quadratic approximation, Timoshenko's model, geometric nonlinearity, classical model, optimization, simplified equations of motion.
Mots-clés : equations of motion
@article{IVM_2016_9_a9,
     author = {A. M. Kamalutdinov and V. N. Paimushin},
     title = {Refined geometrically nonlinear equations of motion for elongated rod-type plate},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--89},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_9_a9/}
}
TY  - JOUR
AU  - A. M. Kamalutdinov
AU  - V. N. Paimushin
TI  - Refined geometrically nonlinear equations of motion for elongated rod-type plate
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 84
EP  - 89
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_9_a9/
LA  - ru
ID  - IVM_2016_9_a9
ER  - 
%0 Journal Article
%A A. M. Kamalutdinov
%A V. N. Paimushin
%T Refined geometrically nonlinear equations of motion for elongated rod-type plate
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 84-89
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_9_a9/
%G ru
%F IVM_2016_9_a9
A. M. Kamalutdinov; V. N. Paimushin. Refined geometrically nonlinear equations of motion for elongated rod-type plate. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 84-89. http://geodesic.mathdoc.fr/item/IVM_2016_9_a9/

[1] Standard test method for measuring vibration damping properties of materials, ASTM E-756, Amer. Soc. for Testing and Materials, 2004

[2] Paimushin V. N., Firsov V. A., Gyunal I., Egorov A. G., “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 1. Experimental basis”, Mechanics of Composite Materials, 50:2 (2014), 127–136 | DOI

[3] Egorov A. G., Kamalutdinov A. M., Nuriev A. N., Paimushin V. N., “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 2. Aerodynamic Component of Damping”, Mechanics of Composite Materials, 50:3 (2014), 267–275 | DOI

[4] Paimushin V. N., Firsov V. A., Gyunal I., Shishkin V. M., “Identification of the elasticity and damping of a fiberglass based on a study of dying flexural vibrations of test samples”, Mechanics of Composite Materials, 51:3 (2015), 285–300 | DOI

[5] Paimushin V. N., Shalashilin V. I., “Consistent variant of continuum deformation theory in the quadratic approximation”, Dokl. Phys., 49:6 (2004), 374–377 | DOI | MR

[6] Paimushin V. N., Shalashilin V. I., “On square approximations of the deformation theory and problems of constructing improved versions of geometrical non-linear theory of multylayer construction elements”, J. Appl. Math. Mech., 69:5 (2005), 861–881 | DOI | MR

[7] Paimushin V. N., “Problems of geometric non-linearity and stability in the mechanics of thin shells and rectilinear columns”, J. Appl. Math. Mech., 71:5 (2007), 772–805 | DOI | MR