On covering of linear operators on polyhedral sets
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 74-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of finding of covering constant for a restriction of a linear operator to a polyhedral set. An obtained result allows to reduce the initial problem to the problem of finding of covering constant for some linear bijective operators.
Keywords: covering mapping, linear operator, linear inequalities.
@article{IVM_2016_9_a7,
     author = {S. E. Zhukovskiy},
     title = {On covering of linear operators on polyhedral sets},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--77},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_9_a7/}
}
TY  - JOUR
AU  - S. E. Zhukovskiy
TI  - On covering of linear operators on polyhedral sets
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 74
EP  - 77
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_9_a7/
LA  - ru
ID  - IVM_2016_9_a7
ER  - 
%0 Journal Article
%A S. E. Zhukovskiy
%T On covering of linear operators on polyhedral sets
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 74-77
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_9_a7/
%G ru
%F IVM_2016_9_a7
S. E. Zhukovskiy. On covering of linear operators on polyhedral sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 74-77. http://geodesic.mathdoc.fr/item/IVM_2016_9_a7/

[1] Graves L. M., “Some mapping theorems”, Duke Math. J., 17:2 (1950), 111–114 | DOI | MR | Zbl

[2] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl

[3] Arutyunov A. V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. RAN, 416:2 (2007), 151–155 | MR | Zbl

[4] Avakov E. R., Arutyunov A. V., Zhukovskii E. S., “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differents. uravneniya, 45:5 (2009), 613–634 | MR | Zbl

[5] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “O korrektnosti differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differents. uravneniya, 47:11 (2011), 1523–1537 | MR | Zbl

[6] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Analysis: Theory, Methods and Appl., 75:3 (2012), 1026–1044 | DOI | MR | Zbl

[7] Arutyunov A. V., Zhukovskii S. E., Pavlova N. G., “Ravnovesnye tseny kak tochka sovpadeniya dvukh otobrazhenii”, Zhurn. vychisl. matem. i matem. fiz., 53:2 (2013), 225–237 | DOI | MR | Zbl

[8] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1984 | MR

[9] Zhukovskii S. E., “O nakryvayuschikh svoistvakh suzhenii otobrazhenii metricheskikh prostranstv”, Vestn. Tambovsk. un-ta. Ser. Estestv. i tekhn. nauki, 17:3 (2012), 852–856