A problem with dynamic nonlocal condition for pseudohyperbolic equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 42-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an initial-boundary problem with dynamic nonlocal boundary condition for a pseudohyperbolic fourth-order equation in a cylinder. Dynamic nonlocal boundary condition represents a relation between values of a required solution, its derivatives with respect of spacial variables, second-order derivatives with respect to time variable and an integral term. The main result lies in substantiation of solvability of this problem. We prove the existence and uniqueness of a generalized solution. The proof is based on the a priori estimates obtained in this paper, Galyorkin's procedure and the properties of the Sobolev spaces.
Keywords: dynamic boundary conditions, pseudohyperbolic equation, generalized solution.
Mots-clés : nonlocal conditions
@article{IVM_2016_9_a3,
     author = {L. S. Pulkina},
     title = {A problem with dynamic nonlocal condition for pseudohyperbolic equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--50},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_9_a3/}
}
TY  - JOUR
AU  - L. S. Pulkina
TI  - A problem with dynamic nonlocal condition for pseudohyperbolic equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 42
EP  - 50
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_9_a3/
LA  - ru
ID  - IVM_2016_9_a3
ER  - 
%0 Journal Article
%A L. S. Pulkina
%T A problem with dynamic nonlocal condition for pseudohyperbolic equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 42-50
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_9_a3/
%G ru
%F IVM_2016_9_a3
L. S. Pulkina. A problem with dynamic nonlocal condition for pseudohyperbolic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 42-50. http://geodesic.mathdoc.fr/item/IVM_2016_9_a3/

[1] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differents. uravneniya, 16:11 (1980), 1925–1935 | MR

[2] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 | MR

[3] Kamynin L. I., “Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviyami”, Zhurn. vychisl. matem. i matem. fiz., 4:6 (1964), 1006–1024 | MR | Zbl

[4] Gordeziani D. G., Avalishvili G. A., “Resheniya nelokalnykh zadach dlya odnomernykh kolebanii sredy”, Matem. modelir., 12:1 (2000), 94–103 | MR | Zbl

[5] Bouziani A., “On the solvability of a nonlocal problems arising in dynamics of moisture transfer”, Georgian Math. J., 10:4 (2003), 607–622 | MR | Zbl

[6] Kamynin V. L., “Obratnaya zadacha opredeleniya mladshego koeffitsienta v parabolicheskom uravnenii pri uslovii integralnogo nablyudeniya”, Matem. zametki, 94:2 (2013), 207–217 | DOI | Zbl

[7] Kozhanov A. I., “O razreshimosti obratnykh zadach vosstanovleniya koeffitsientov v uravneniyakh sostavnogo tipa”, Vestn. NGU, cer. matem., mekh., inform., 8:3 (2008), 81–99 | Zbl

[8] Cannon J. R., Lin Y. P., “An inverse problem of finding a parameter in a semi-linear heat equation”, J. Math. Anal. Appl., 145:2 (1990), 470–484 | DOI | MR | Zbl

[9] Avalishvili G. A., “Nonlocal in time problems for evolution equations of second order”, J. Appl. Anal., 2:2 (2002), 245–249 | MR

[10] Kozhanov A. I., Pulkina L. S., “O razreshimosti kraevykh zadach s nelokalnym granichnym usloviem integralnogo vida dlya mnogomernykh giperbolicheskikh uravnenii”, Differents. uravneniya, 42:9 (2006), 1166–1179 | MR | Zbl

[11] Dmitriev V. B., “Nelokalnaya zadacha s integralnymi usloviyami dlya volnovogo uravneniya”, Vestnik SamGU, 2006, no. 2(42), 15–27 | MR

[12] Lazhetich N. L., “O klassicheskoi razreshimosti smeshannoi zadachi dlya odnomernogo giperbolicheskogo uravneniya vtorogo poryadka”, Differents. uravneniya, 42:8 (2006), 1072–1077 | MR

[13] Kozhanov A. I., “O razreshimosti nekotorykh prostranstvenno nelokalnykh kraevykh zadach dlya lineinykh parabolicheskikh uravnenii”, Vestn. Samarsk. gos. un-ta, 2008, no. 3(62), 165–174 | MR | Zbl

[14] Strigun M. V., “Ob odnoi nelokalnoi zadache s integralnymi granichnym usloviem dlya giperbolicheskogo uravneniya”, Vestn. Samarsk. gos. un-ta, 2009, no. 8(74), 78–87

[15] Kozhanov A. I., Pulkina L. S., “O razreshimosti nekotorykh granichnykh zadach so smescheniem dlya lineinykh giperbolicheskikh uravnenii”, Matem. zhurn. in-ta matem. MOiN RK (Almaty), 2:32 (2009), 78–92

[16] Avalishvili G., Avalishvili M., Gordeziani D., “On integral nonlocal boundary problems for some partial differential equations”, Bull. Georgian National Acad. Sci., 5:1 (2011), 31–37 | MR | Zbl

[17] Pulkina L. S., Zadachi s neklassicheskimi usloviyami dlya giperbolicheskikh uravnenii, Samarskii universitet, Samara, 2012

[18] Pulkina L. S., “Kraevye zadachi dlya giperbolicheskogo uravneniya s nelokalnymi usloviyami $\mathrm I$ i $\mathrm{II}$ roda”, Izv. vuzov. Matem., 2012, no. 4, 74–83 | MR | Zbl

[19] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 2004

[20] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Teoriya svobodnykh i vynuzhdennykh kolebanii tverdogo sterzhnya, osnovannaya na modeli Releya”, Dokl. RAN, 417:1 (2007), 1–7 | MR

[21] Doronin G. G., Lar'kin N. A., Souza A. J., “A hyperbolic problem with nonlinear second-order boundary damping”, Electron. J. Diff. Equat., 1998 (1998), No 28, 10 pp. | MR | Zbl

[22] Korpusov M. O., Razrushenie v neklassicheskikh volnovykh uravneniyakh, URSS, M., 2010

[23] Beilin A. B., Pulkina L. S., “Zadacha o prodolnykh kolebaniyakh sterzhnya s dinamicheskimi granichnymi usloviyami”, Vestnik SamGU, 2014, no. 3(114), 9–19 | Zbl

[24] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[25] Pulkina L. S., “Solution to nonlocal problems of pseudohyperbolic equations”, Electron. J. Diff. Equat., 2014 (2014), No 116, 9 pp. | DOI | MR | Zbl