Semifield planes of odd order that admit the autotopism subgroup isomorphic to~$A_4$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 10-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We evolve an approach to construction and classification of semifield projective planes with the use of the linear space and spread set. We construct the spread set matrix representation for any semifield plane of odd order that admits the Baer involution in translation complement or autotopism subgroup isomorphic to $A_4$. We give the examples of semifield planes of order 81 with the indicated condition.
Keywords: semifield plane, spread set, Baer involution, collineation group, alternating group.
Mots-clés : isomorphism, autotopism
@article{IVM_2016_9_a1,
     author = {O. V. Kravtsova},
     title = {Semifield planes of odd order that admit the autotopism subgroup isomorphic to~$A_4$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--25},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_9_a1/}
}
TY  - JOUR
AU  - O. V. Kravtsova
TI  - Semifield planes of odd order that admit the autotopism subgroup isomorphic to~$A_4$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 10
EP  - 25
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_9_a1/
LA  - ru
ID  - IVM_2016_9_a1
ER  - 
%0 Journal Article
%A O. V. Kravtsova
%T Semifield planes of odd order that admit the autotopism subgroup isomorphic to~$A_4$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 10-25
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_9_a1/
%G ru
%F IVM_2016_9_a1
O. V. Kravtsova. Semifield planes of odd order that admit the autotopism subgroup isomorphic to~$A_4$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 10-25. http://geodesic.mathdoc.fr/item/IVM_2016_9_a1/

[1] Biliotti M., Jha V., Johnson N. L., Menichetti G., “A structure theory for two-dimensional translation planes of order $q^2$ that admit collineation group of order $q^2$”, Geom. dedic., 29:1 (1989), 7–43 | DOI | MR | Zbl

[2] Huang H., Johnson N. L., “$8$ semifield planes of order $8^2$”, Discrete Math., 80:1 (1990), 69–79 | DOI | MR | Zbl

[3] Cordero M., “Matrix spread sets of $p$-primitive semifield planes”, Int. J. Math. and Math. Sci., 20:2 (1997), 293–298 | DOI | MR

[4] Podufalov N. D., Durakov B. K., Kravtsova O. V., Durakov E. B., “O polupolevykh ploskostyakh poryadka $16^2$”, Sib. matem. zhurn., 37:3 (1996), 616–623 | MR | Zbl

[5] Kravtsova O. V., “Nekotorye podgruppy avtomorfizmov polupolevykh ploskostei”, Algebra i logika: teoriya i prilozheniya, Mezhdunarodn. konf., posvyasch. V. P. Shunkovu (Krasnoyarsk, 21–27 iyulya 2013 g.), Krasnoyarsk, 2013, 78–80

[6] Kravtsova O. V., “Podgruppa avtotopizmov polupolevoi ploskosti nechetnogo poryadka, izomorfnaya znakoperemennoi gruppe $A_4$”, Materialy konf. “Algebra i matem. logika: teoriya i prilozheniya” {(g. Kazan, 2–6 iyunya 2014 g.)} i soputstvuyuschei molodezhnoi shkoly “Vychislimost i vychislimye struktury”, Izd-vo Kazansk. un-ta, Kazan, 2014, 89

[7] Hughes D. R., Piper F. C., Projective planes, Springer-Verlag, New York, 1973 | MR | Zbl

[8] Podufalov N. D., “On spread sets and collineations of projective planes”, Contem. Math., 131:1 (1992), 697–705 | DOI | MR | Zbl

[9] Mazurov V. D., Khukhro E. I. (Sost.), Nereshennye voprosy teorii grupp. Kourovskaya tetrad, Izdanie 16-e, dopolnennoe, vklyuchayuschee arkhiv reshennykh zadach, Novosibirsk, 2006

[10] Levchuk V. M., Panov S. V., Shtukkert P. K., “Voprosy perechisleniya proektivnykh ploskostei i latinskikh pryamougolnikov”, Mekhan. i modelirovanie, SibGAU, Krasnoyarsk, 2012, 56–70

[11] Kravtsova O. V., “Polupolevye ploskosti, dopuskayuschie berovskuyu involyutsiyu”, Izv. Irkutsk. gos. un-ta. Ser. Matem., 2013, no. 2, 26–38

[12] Kravtsova O. V., Panov S. V., Shevelyova I. V., “Some results on isomorphisms of finite semifield planes”, J. Siberian Federal University. Mathematics Physics, 6:1 (2013), 33–39

[13] Kravtsova O. V., Kurshakova P. K., “K voprosu ob izomorfizme polupolevykh ploskostei”, Vestn. KGTU. Matem. metody i modelir., 2006, no. 42, 13–19

[14] Podufalov N. D., Busarkina I. V., Durakov B. K., “O gruppe avtotopizmov polupolevoi $p$-primitivnoi ploskosti”, Materialy mezhregionalnoi nauchnoi konferentsii “Issledovaniya po analizu i algebre”, TGU, Tomsk, 1998, 190–195

[15] Kravtsova O. V., “O nekotorykh translyatsionnykh ploskostyakh, dopuskayuschikh $A_4$”, Tez. dokl. III Vsesibirskogo Kongressa zhenschin-matematikov (Krasnoyarsk, 15–18 yanvarya 2004 g.), Krasnoyarsk, 2004, 38–39

[16] Kravtsova O. V., Pramzina V. O., “O podgruppe kollineatsii polupolevoi ploskosti, izomorfnoi $A_4$”, Zhurn. Sib. federalnogo un-ta. Matem. i fizika, 4:4 (2011), 498–504