On boundary theorems of uniqueness for logarithmically-subharmonic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the boundary theorems of uniqueness for some important classes of logarithmically-subharmonic functions defined on the unit circle.
Keywords: logarithmically-subharmonic functions, subordinate subharmonic functions.
@article{IVM_2016_9_a0,
     author = {S. L. Berberyan},
     title = {On boundary theorems of uniqueness for logarithmically-subharmonic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_9_a0/}
}
TY  - JOUR
AU  - S. L. Berberyan
TI  - On boundary theorems of uniqueness for logarithmically-subharmonic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 3
EP  - 9
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_9_a0/
LA  - ru
ID  - IVM_2016_9_a0
ER  - 
%0 Journal Article
%A S. L. Berberyan
%T On boundary theorems of uniqueness for logarithmically-subharmonic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 3-9
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_9_a0/
%G ru
%F IVM_2016_9_a0
S. L. Berberyan. On boundary theorems of uniqueness for logarithmically-subharmonic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2016_9_a0/

[1] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950

[2] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR

[3] Zakharyan V. S., “Teoremy edinstvennosti dlya nekotorykh klassov funktsii, meromorfnykh v kruge”, Matem. sb., 63(105):1 (1964), 3–22 | MR | Zbl

[4] Gavrilov V. I., “O nekotorykh teoremakh edinstvennosti dlya meromorfnykh funktsii”, Tr. semin. im. I. G. Petrovskogo, 1, 1975, 57–62 | MR | Zbl

[5] Cargo G. T., “Some topological analogues of the F. Riesz and M. Riesz uniqueness theorem”, J. London Math. Soc. (2), 12:1 (1975/76), 67–74 | DOI | MR | Zbl

[6] Gavrilov V. I., Mirzoyan M. M., “Granichnye teoremy edinstvennosti dlya meromorfnykh funktsii”, Vestn. Moskovsk. un-ta. Ser. I. Matem., mekhanika, 1979, no. 4, 34–37 | MR | Zbl

[7] Arsove M. G., “The Lusin–Privalov theorem for subharmonic functions”, Proc. London Math. Soc. (3), 14:2 (1964), 260–270 | DOI | MR | Zbl

[8] Lozinskii S. M., “O subgarmonicheskikh funktsiyakh i ikh prilozhenii k teorii poverkhnostei”, Izv. AN SSSR. Ser. matem., 8:4 (1944), 175–194 | MR | Zbl

[9] Berman R. D., “Analogues of radial uniqueness theorems for subharmonic functions in the unit disk”, J. London Math. Soc. (2), 29:1 (1984), 103–112 | DOI | MR | Zbl

[10] Berberyan S. L., “O nekotorykh teoremakh edinstvennosti dlya subgarmonicheskikh funktsii”, Dokl. NAN Armenii, 110:2 (2011), 128–136 | MR

[11] Berberyan S. L., “O raspredelenii znachenii garmonicheskikh funktsii v edinichnom kruge”, Izv. vuzov. Matem., 2011, no. 6, 12–19 | MR | Zbl

[12] Berberyan S. L., “O nekotorykh primeneniyakh $P'$-posledovatelnostei pri issledovanii granichnykh svoistv proizvolnykh garmonicheskikh funktsii”, Izv. vuzov. Matem., 2011, no. 9, 3–9 | MR | Zbl

[13] Privalov I. I., Subgarmonicheskie funktsii, Nauchno-tekhnicheskoe izdatelstvo, NKTP SSSR, M.–L., 1937

[14] Rung D. C., “Asymptotic values of normal subharmonic functions”, Math. Zeitshr., 84:1 (1964), 9–15 | DOI | MR | Zbl

[15] Meek J. L., “Subharmonic versions of Fatou's theorem”, Proc. Amer. Math. Soc., 30:2 (1971), 313–317 | MR | Zbl