Generalized Green operator of Noetherian boundary-value problem for matrix differential equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 74-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find necessary and sufficient conditions for solvability and the construction of the generalized Green operator for linear boundary-value problem for Noetherian linear matrix differential equation. We propose an operator, which leads linear matrix algebraic equation to the traditional linear algebraic system with a rectangular matrix. We use pseudoinverse Moore–Penrose matrices and orthogonal projections for solving linear algebraic system.
Keywords: Green operator, Noetherian boundary value problem, matrix differential equation.
@article{IVM_2016_8_a7,
     author = {S. M. Chuiko},
     title = {Generalized {Green} operator of {Noetherian} boundary-value problem for matrix differential equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--83},
     publisher = {mathdoc},
     number = {8},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_8_a7/}
}
TY  - JOUR
AU  - S. M. Chuiko
TI  - Generalized Green operator of Noetherian boundary-value problem for matrix differential equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 74
EP  - 83
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_8_a7/
LA  - ru
ID  - IVM_2016_8_a7
ER  - 
%0 Journal Article
%A S. M. Chuiko
%T Generalized Green operator of Noetherian boundary-value problem for matrix differential equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 74-83
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_8_a7/
%G ru
%F IVM_2016_8_a7
S. M. Chuiko. Generalized Green operator of Noetherian boundary-value problem for matrix differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 74-83. http://geodesic.mathdoc.fr/item/IVM_2016_8_a7/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR

[2] Boichuk A. A., Samoilenko A. M., Generalized inverse operators and Fredholm boundary-value problems, VSP, Utrecht–Boston, 2004 | MR | Zbl

[3] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969 | MR

[4] Boichuk A. A., Krivosheya S. A., “A critical periodic boundary value problem for a matrix Riccati equations”, Diff. Equat., 37:4 (2001), 464–471 | DOI | MR | Zbl

[5] Boichuk A. A., Krivosheya S. A., “Criterion of the solvability of matrix equations of the Lyapunov type”, Ukrainian Math. J., 50:8 (1998), 1162–1169 | DOI | MR | Zbl

[6] Chuiko S. M., “O reshenii matrichnogo uravneniya Silvestra”, Vestn. Odessk. nats. un-ta. Ser. matem. i mekhan., 19:1(21) (2014), 49–57

[7] Chuiko S. M., “O reshenii matrichnykh uravnenii Lyapunova”, Vestn. Kharkovsk. nats. un-ta im. V. N. Karazina. Seriya: Matem., prikl. matem. i mekhan., 2014, no. 1120, 85–94 | Zbl

[8] Boichuk A. A., Konstruktivnye metody analiza kraevykh zadach, Nauk. dumka, Kiev, 1990 | MR

[9] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[10] Chuiko S. M., “On approximate solution of boundary value problems by the least square method”, Nonlinear Oscillations (N.Y.), 11:4 (2008), 585–604 | DOI | MR | Zbl

[11] Laptinskii V. N., Makovetskii I. I., “K konstruktivnomu analizu dvukhtochechnoi kraevoi zadachi dlya nelineinogo uravneniya Lyapunova”, Differents. uravneniya, 41:7 (2005), 994–996 | MR | Zbl

[12] Laptinskii V. N., Rogolev D. V., “Constructive methods for obtaining the solution of the periodic boundary value problem for a system of matrix differential equations of Riccati type”, Diff. Equat., 47 (2011), 1412–1420 | DOI | MR | Zbl

[13] Bondarev A. N., Laptinskii V. N., “Multipoint boundary value problem for the Lyapunov equation in the case of strong degeneration of the boundary conditions”, Diff. Equat., 47 (2011), 778–786 | DOI | MR | Zbl