Convergence of the Galyorkin method of approximate solving of parabolic equation with weight integral condition on a~solution
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 49-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Hilbert space the abstract linear parabolic equation with nonlocal weight integral condition is resolved approximately by Galyorkin method. Estimates on projection subspaces are oriented on the finite element method. We consider the case of projection subspaces built by the uniform partition of domain of variation of space variables and also the case of arbitrary projection subspaces of the type of finite elements. We obtain the errors estimations of approximate solutions and establish the orders of rate of convergence exact by order of approximation.
Keywords: Hilbert space, nonlocal weighted integral condition, Galyorkin method.
Mots-clés : parabolic equation
@article{IVM_2016_8_a4,
     author = {A. A. Petrova and V. V. Smagin},
     title = {Convergence of the {Galyorkin} method of approximate solving of parabolic equation with weight integral condition on a~solution},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {49--59},
     publisher = {mathdoc},
     number = {8},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_8_a4/}
}
TY  - JOUR
AU  - A. A. Petrova
AU  - V. V. Smagin
TI  - Convergence of the Galyorkin method of approximate solving of parabolic equation with weight integral condition on a~solution
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 49
EP  - 59
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_8_a4/
LA  - ru
ID  - IVM_2016_8_a4
ER  - 
%0 Journal Article
%A A. A. Petrova
%A V. V. Smagin
%T Convergence of the Galyorkin method of approximate solving of parabolic equation with weight integral condition on a~solution
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 49-59
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_8_a4/
%G ru
%F IVM_2016_8_a4
A. A. Petrova; V. V. Smagin. Convergence of the Galyorkin method of approximate solving of parabolic equation with weight integral condition on a~solution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 49-59. http://geodesic.mathdoc.fr/item/IVM_2016_8_a4/

[1] Oben Zh.-P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR

[2] Petrova A. A., Smagin V. V., “Razreshimost variatsionnoi zadachi parabolicheskogo tipa s vesovym integralnym usloviem”, Vestn. Voronezhsk. gos. un-ta. Ser. fiz., matem., 2014, no. 4, 160–169

[3] Kritskaya E. A., Smagin V. V., “O slaboi razreshimosti variatsionnoi zadachi parabolicheskogo tipa s integralnym usloviem”, Vestn. Voronezhsk. gos. un-ta. Ser. fiz., matem., 2008, no. 1, 222–225 | Zbl

[4] Fedorov V. E., Ivanova N. D., Fedorova Yu. Yu., “Nelokalnaya po vremeni zadacha dlya neodnorodnykh evolyutsionnykh uravnenii”, Sib. matem. zhurn., 55:4 (2014), 882–897 | MR | Zbl

[5] Galakhov E. I., Skubachevskii A. L., “Ob odnoi nelokalnoi spektralnoi zadache”, Differents. uravneniya, 33:1 (1997), 25–32 | MR | Zbl

[6] Galakhov E. I., Skubachevskii A. L., “O szhimayuschikh neotritsatelnykh polugruppakh s nelokalnymi usloviyami”, Matem. sb., 189:1 (1998), 45–78 | DOI | MR | Zbl

[7] Silchenko Yu. T., “Uravneniya parabolicheskogo tipa s nelokalnymi usloviyami”, Sovremen. matem. Fundament. napravleniya, 17, 2006, 5–10 | MR

[8] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galërkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differents. uravneniya, 11:7 (1975), 1269–1277 | MR | Zbl

[9] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Matem. sb., 188:3 (1997), 143–160 | DOI | MR | Zbl

[10] Nguen Tyong Khuen, Smagin V. V., “Skhodimost metoda Galërkina priblizhennogo resheniya parabolicheskogo uravneniya s integralnym usloviem na reshenie”, Vestn. Voronezhsk. gos. un-ta. Ser. fiz., matem., 2010, no. 1, 144–149

[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[12] Vasileva T. E., Smagin V. V., “Skhodimost proektsionnogo metoda dlya uravnenii s nesimmetrichnoi glavnoi chastyu”, Sb. tr. molodykh uchenykh matem. f-ta Voronezhsk. gos. un-ta, Voronezh, 2001, 38–42

[13] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[14] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN ArmSSR, Erevan, 1979

[15] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionnogo i proektsionno-raznostnogo metodov dlya parabolicheskikh uravnenii”, Matem. sb., 185:11 (1994), 79–94 | MR | Zbl

[16] Smagin V. V., “Koertsitivnaya energeticheskaya skhodimost proektsionno-raznostnogo metoda dlya parabolicheskikh uravnenii”, Vestn. Voronezhsk. gos. un-ta. Ser. fiz., matem., 2002, no. 2, 96–100 | Zbl

[17] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[18] Smagin V. V., “Proektsionno-raznostnye metody priblizhennogo resheniya parabolicheskikh uravnenii s nesimmetrichnymi operatorami”, Differents. uravneniya, 37:1 (2001), 115–123 | MR | Zbl

[19] Smagin V. V., “Skhodimost metoda Galërkina priblizhennogo resheniya parabolicheskogo uravneniya s periodicheskim usloviem na reshenie”, Vestn. Voronezhsk. gos. un-ta. Ser. fiz., matem., 2013, no. 1, 222–231