Iteratively regularized Gauss--Newton method for operator equations with normally solvable derivative at the solution
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the iteratively regularized Gauss–Newton method in a Hilbert space for solving irregular nonlinear equations with smooth operators having normally solvable derivatives at the solution. We consider both a priori and a posteriori stopping criterions for the iterations and establish accuracy estimates for resulting approximations. In the case where the a priori stopping rule is used, the accuracy of approximations arises to be proportional to the error level in input data. The latter result generalizes well-known estimates of this kind obtained for linear equations with normally solvable operators.
Keywords:
operator equation, irregular operator, Hilbert space, normally solvable operator, Gauss–Newton method, iterative regularization, stopping rule, accuracy estimate.
@article{IVM_2016_8_a0,
author = {A. B. Bakushinskii and M. Yu. Kokurin},
title = {Iteratively regularized {Gauss--Newton} method for operator equations with normally solvable derivative at the solution},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--11},
publisher = {mathdoc},
number = {8},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_8_a0/}
}
TY - JOUR AU - A. B. Bakushinskii AU - M. Yu. Kokurin TI - Iteratively regularized Gauss--Newton method for operator equations with normally solvable derivative at the solution JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 3 EP - 11 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_8_a0/ LA - ru ID - IVM_2016_8_a0 ER -
%0 Journal Article %A A. B. Bakushinskii %A M. Yu. Kokurin %T Iteratively regularized Gauss--Newton method for operator equations with normally solvable derivative at the solution %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2016 %P 3-11 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2016_8_a0/ %G ru %F IVM_2016_8_a0
A. B. Bakushinskii; M. Yu. Kokurin. Iteratively regularized Gauss--Newton method for operator equations with normally solvable derivative at the solution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2016_8_a0/