Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_8_a0, author = {A. B. Bakushinskii and M. Yu. Kokurin}, title = {Iteratively regularized {Gauss--Newton} method for operator equations with normally solvable derivative at the solution}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--11}, publisher = {mathdoc}, number = {8}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_8_a0/} }
TY - JOUR AU - A. B. Bakushinskii AU - M. Yu. Kokurin TI - Iteratively regularized Gauss--Newton method for operator equations with normally solvable derivative at the solution JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 3 EP - 11 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_8_a0/ LA - ru ID - IVM_2016_8_a0 ER -
%0 Journal Article %A A. B. Bakushinskii %A M. Yu. Kokurin %T Iteratively regularized Gauss--Newton method for operator equations with normally solvable derivative at the solution %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2016 %P 3-11 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2016_8_a0/ %G ru %F IVM_2016_8_a0
A. B. Bakushinskii; M. Yu. Kokurin. Iteratively regularized Gauss--Newton method for operator equations with normally solvable derivative at the solution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2016_8_a0/
[1] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002
[2] Izmailov A. F., Tretyakov A. A., $2$-regulyarnye resheniya nelineinykh zadach, Fizmatlit, M., 1999 | MR | Zbl
[3] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sib. nauchn. izd-vo, Novosibirsk, 2008
[4] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR
[5] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, Fizmatlit, M., 1995 | MR
[6] Bakushinsky A., Smirnova A., “On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems”, Numer. Funct. Anal. Optim., 26:1 (2005), 35–48 | DOI | MR | Zbl
[7] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR
[8] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya neregulyarnykh uravnenii, LENAND, M., 2006
[9] Leonov A. S., “Mozhet li apriornaya otsenka tochnosti priblizhennogo resheniya nekorrektnoi zadachi byt sravnimoi s oshibkoi dannykh?”, Zhurn. vychisl. matem. i matem. fiz., 54:4 (2014), 562–568 | DOI | Zbl
[10] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods for nonlinear ill-posed problems, Walter de Gruyter, Berlin, 2008 | MR
[11] Bakushinskii A. B., Kokurin M. Yu., Algoritmicheskii analiz neregulyarnykh operatornykh uravnenii, LENAND, M., 2012