Multidimensional triangle-truncated simplexes
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2016), pp. 92-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the convex polytopes, called triangle-truncated simplexes. From the point of view of a constructive object in four and higher dimensions vector space such polytopes are multidimensional analogs of one classical semi-regular polytopes, namely, truncated tetrahedron. We present results of investigations of inner geometrical structure and combinatorial characteristics of the complete assemblage of faces of triangle-truncated simplexes in vector spaces of arbitrary dimension. We formulate and prove a theorem about the volumes of multidimensional truncated simplex of generalized kind in Euclidean space.
Keywords: constructive geometrical object, multidimensional analog of truncated tetrahedron, triangle-truncated simplex, combinatorial characteristics.
@article{IVM_2016_7_a9,
     author = {Yu. S. Reznikova},
     title = {Multidimensional triangle-truncated simplexes},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {92--100},
     publisher = {mathdoc},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_7_a9/}
}
TY  - JOUR
AU  - Yu. S. Reznikova
TI  - Multidimensional triangle-truncated simplexes
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 92
EP  - 100
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_7_a9/
LA  - ru
ID  - IVM_2016_7_a9
ER  - 
%0 Journal Article
%A Yu. S. Reznikova
%T Multidimensional triangle-truncated simplexes
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 92-100
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_7_a9/
%G ru
%F IVM_2016_7_a9
Yu. S. Reznikova. Multidimensional triangle-truncated simplexes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2016), pp. 92-100. http://geodesic.mathdoc.fr/item/IVM_2016_7_a9/

[1] Reznikova Yu. S., “Sredinno-usechennye simpleksy v affinnykh prostranstvakh proizvolnoi razmernosti”, Proc. Intern. Geometry Center, 3:2 (2010), 13–24

[2] Coxeter H. S. M., Regular Polytopes, 3rd Ed., Dover Publications Inc., New York; Methuen and Co. Ltd., London, 1973 | MR

[3] Deza M., Grishukhin V. P., Shtogrin M. I., Izometricheskie poliedralnye podgrafy v giperkubakh i kubicheskikh reshetkakh, MTsNMO, M., 2007

[4] Gosset T., “On the regular and semiregular figures in spaces of $n$ dimensions”, Messenger of Mathematics, 29 (1899), 43–48 | Zbl

[5] Kettler Paul C., Vertex and path attributes of the generalized hypercube with simplex cuts, Pure Mathematics e-Print Series, No. 7, Department of Mathematics, University of Oslo, January 2008

[6] Ziegler Gunter M., Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[7] Berzhe M., Geometriya, v. 1, Mir, M., 1984

[8] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Mnogogranniki, grafy, optimizatsiya, Nauka, M., 1981 | MR

[9] Rozenfeld B. A., Mnogomernye prostranstva, Nauka, M., 1966 | MR

[10] Smirnov E. Yu., Gruppy otrazhenii i pravilnye mnogogranniki, MTsNMO, M., 2009

[11] Stringkhem V. I., “Pravilnye figury v $n$-mernom prostranstve”, UMN, 1944, no. 10, 22–33

[12] D'Andrea K., Sombra M., “Opredelitel Keli–Mengera neprivodim pri $n\geq3$”, Sib. matem. zhurn., 46:1 (2005), 90–97 | MR | Zbl

[13] Nevskii M. B., Geometricheskie otsenki v polinomialnoi interpolyatsii, YarGu, Yaroslavl, 2012