On spectral problem for one equation of high even order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2016), pp. 44-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an eigenvaule problem for an equation of even order in a rectangular domain. We investigate problems on distribution and asymptotics of eigenvalues and dependence of an eigenvalue on the change of potential $q(x,y)$.
Keywords: eigenvalues, eigenfunctions, distribution and asymptotics of eigenvalues, Green function, completeness of a system of eigenfunctions.
@article{IVM_2016_7_a5,
     author = {B. Yu. Irgashev},
     title = {On spectral problem for one equation of high even order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--54},
     publisher = {mathdoc},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_7_a5/}
}
TY  - JOUR
AU  - B. Yu. Irgashev
TI  - On spectral problem for one equation of high even order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 44
EP  - 54
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_7_a5/
LA  - ru
ID  - IVM_2016_7_a5
ER  - 
%0 Journal Article
%A B. Yu. Irgashev
%T On spectral problem for one equation of high even order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 44-54
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_7_a5/
%G ru
%F IVM_2016_7_a5
B. Yu. Irgashev. On spectral problem for one equation of high even order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2016), pp. 44-54. http://geodesic.mathdoc.fr/item/IVM_2016_7_a5/

[1] Titchmarsh E. Ch., Razlozhenie po sobstvennym funktsiyam svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 2, In. lit., M., 1961 | MR

[2] Kurant R., Gilbert D., Metody matematicheskoi fiziki, v. 1, In. lit., M., 1951 | MR