About $A$-property of some elastic three-webs
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2016), pp. 23-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two families of multidimensional three-webs and prove that these webs are webs $E$, i.e., in their coordinate loops the elasticity identity holds true. We also show that these webs have $A$-properties.
Keywords: three-webs, $A$-property, loops, elastic three-webs, Bol three-webs, Moufang three-webs.
@article{IVM_2016_7_a3,
     author = {K. R. Dzhukashev},
     title = {About $A$-property of some elastic three-webs},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--33},
     publisher = {mathdoc},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_7_a3/}
}
TY  - JOUR
AU  - K. R. Dzhukashev
TI  - About $A$-property of some elastic three-webs
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 23
EP  - 33
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_7_a3/
LA  - ru
ID  - IVM_2016_7_a3
ER  - 
%0 Journal Article
%A K. R. Dzhukashev
%T About $A$-property of some elastic three-webs
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 23-33
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_7_a3/
%G ru
%F IVM_2016_7_a3
K. R. Dzhukashev. About $A$-property of some elastic three-webs. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2016), pp. 23-33. http://geodesic.mathdoc.fr/item/IVM_2016_7_a3/

[1] Moufang R., “Zur Struktur von Alternativkörpern”, Math. Ann., 110 (1935), 416–430 | DOI | MR

[2] Maltsev A. I., “Analiticheskie lupy”, Matem. sb., 36(78):3 (1955), 569–576 | MR | Zbl

[3] Sabinin L. V., Analiticheskie kvazigruppy i geometriya, Izd-vo Un-ta druzhby narodov, M., 1991 | MR

[4] Mikheev P. O., Sabinin L. V., “Gladkie kvazigruppy i geometriya”, Itogi nauki i tekhn. Ser. probl. geometrii, 20, VINITI, M., 1988, 75–110 | MR

[5] Akivis M. A., Shelekhov A. M., Mnogomernye tri-tkani i ikh prilozheniya, Tversk. gos. un-t, 2010

[6] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR

[7] Shelekhov A. M., “Ob analiticheskikh pesheniyakh upavneniya $x(yx)=(xy)x$”, Matem. zametki, 50:4 (1991), 132–140 | MR | Zbl

[8] Balandina G. A., Shelekhov A. M., “On general theory of elastic webs”, Webs and quasigroups, Tver State Univ., 1995, 62–74 | MR | Zbl

[9] Dzhukashev K. R., “O tri-tkanyakh s elastichnymi koordinatnymi lupami”, Tr. mezhdunarodn. geometrich. tsentra, Odessa, 2013, 52–80

[10] Khasina (Fedorova) V. I., “O mnogomernykh tri-tkanyakh s elastichnymi $W$-algebrami”, Sib. matem. zhurn., 17:4 (1976), 945–959 | MR

[11] Fedorova V. I., “O tri-tkanyakh s chastichno-kososimmetrichnym tenzorom krivizny”, Izv. vuzov. Matem., 1976, no. 11, 114–117 | MR | Zbl

[12] Fedorova V. I., “Ob odnom klasse tri-tkanei $W_6$ s chastichno-kososimmetrichnym tenzorom krivizny”, Ukr. geom. sb., 20 (1977), 115–124 | MR | Zbl

[13] Fedorova V. I., “Ob uslovii, opredelyayuschem mnogomernye tri-tkani Bola”, Sib. matem. zhurn., 19:4 (1978), 922–928 | MR | Zbl

[14] Fedorova V. I., “Shestimernye tri-tkani Bola s simmetrichnym tenzorom $a_{ij}$”, Tkani i kvazigruppy, Kalininsk. gos. un-t, 1981, 110–123 | MR | Zbl

[15] Antipova M. V., “O tkanyakh Bola s pochti nulevym tenzorom krivizny”, Izv. PGPU im. V. G. Belinskogo. Fiz.-matem. i tekhn. nauki, 2011, no. 26, 28–34

[16] Antipova M. V., Shelekhov A. M., “Vosmimernye tkani Bola s pochti nulevym tenzorom krivizny”, Izv. vuzov. Matem., 2013, no. 2, 3–15 | MR | Zbl

[17] Murdoch D. G., “Quasigroups which satisfy certain generalized associative laws”, Amer. J. Math., 61:2 (1939), 509–522 | DOI | MR | Zbl

[18] Osborn M. J., “A theorem on A-loops”, Proc. Amer. Math. Soc., 9:3 (1958), 347–349 | MR | Zbl

[19] Phillips J. D., “On Moufang A-loops”, Comment. Math. Univ. Carolinae, 41:2 (2000), 371–349 | MR

[20] Drápal Aleš, “A-loops close to code loops are groups”, Comment. Math. Univ. Carolinae, 41:2 (2000), 245–249 | MR | Zbl