Main metric invariants of finite metric spaces.~II
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 86-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we obtain new main metric invariants of finite metric spaces. These invariants can be used for classification of the finite metric spaces and their recognition.
Keywords: finite metric space, metric invariant.
@article{IVM_2016_6_a8,
     author = {E. N. Sosov},
     title = {Main metric invariants of finite metric {spaces.~II}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--90},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_6_a8/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - Main metric invariants of finite metric spaces.~II
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 86
EP  - 90
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_6_a8/
LA  - ru
ID  - IVM_2016_6_a8
ER  - 
%0 Journal Article
%A E. N. Sosov
%T Main metric invariants of finite metric spaces.~II
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 86-90
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_6_a8/
%G ru
%F IVM_2016_6_a8
E. N. Sosov. Main metric invariants of finite metric spaces.~II. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 86-90. http://geodesic.mathdoc.fr/item/IVM_2016_6_a8/

[1] Sosov E. N., “Ob osnovnykh metricheskikh invariantakh konechnykh metricheskikh prostranstv”, Izv. vuzov. Matem., 2015, no. 5, 45–48 | MR | Zbl

[2] Sosov E. N., “Otnositelnyi $N$-radius ogranichennogo mnozhestva metricheskogo prostranstva”, Uchen. zap. Kazansk. un-ta, 153, no. 4, 2011, 28–36 | MR | Zbl

[3] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyut. isledov., Moskva–Izhevsk, 2004