Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_6_a3, author = {S. B. Klimentov}, title = {The {Riemann--Hilbert} problem in {Hardy} classes for general first-order elliptic systems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {36--47}, publisher = {mathdoc}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_6_a3/} }
TY - JOUR AU - S. B. Klimentov TI - The Riemann--Hilbert problem in Hardy classes for general first-order elliptic systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 36 EP - 47 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_6_a3/ LA - ru ID - IVM_2016_6_a3 ER -
S. B. Klimentov. The Riemann--Hilbert problem in Hardy classes for general first-order elliptic systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 36-47. http://geodesic.mathdoc.fr/item/IVM_2016_6_a3/
[1] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR
[2] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[3] Klimentov S. B., “Klassy Khardi obobschennykh analiticheskikh funktsii”, Izv. vuzov, Sev.-Kavk. region, Estestv. nauki, 2003, no. 3, 6–10 | Zbl
[4] Kalyanichenko S. I., Klimentov S. B., “Klassy Khardi reshenii uravneniya Beltrami”, Tr. uchastnikov Mezhdunar. shkoly-semin. po geometrii i analizu pamyati N. V. Efimova (Abrau-Dyurso, baza otdykha “Limanchik” Rostovskogo gos. un-ta, 5–11 sentyabrya 2006), ed. S. B. Klimentov, Izd-vo TsVVR, Rostov-na-Donu, 2006, 127–128
[5] Kalyanichenko S. I., Klimentov S. B., “Klassy Khardi reshenii uravneniya Beltrami”, Izv. vuzov, Sev.-Kavk. region, Estestv. nauki, 2008, no. 1, 7–10 | Zbl
[6] Klimentov S. B., “Predstavleniya “vtorogo roda” dlya reshenii klassov Khardi uravneniya Beltrami”, Sib. matem. zhurn., 55:2 (2014), 324–340 | MR | Zbl
[7] Soldatov A. P., “Prostranstvo Khardi reshenii ellipticheskikh sistem pervogo poryadka”, Dokl. RAN, 416:1 (2007), 26–30 | MR | Zbl
[8] Baratchart Laurent, Leblond Juliette, Rigat Stéphane, Russ Emmanuel, “Hardy spaces of the conjugate Beltrami equation”, J. Funct. Anal., 259:2 (2010), 384–427 | DOI | MR | Zbl
[9] Klimentov S. B., “Riemann-Hilbert boundary value problem for generalized analytic functions in Smirnov classes”, Global and Stochastic Anal. (Mind Reader Publ.), 1:2 (2011), 217–240 | Zbl
[10] Klimentov S. B., “Ob odnom sposobe postroeniya reshenii kraevykh zadach teorii izgibanii poverkhnostei polozhitelnoi krivizny”, Ukrainskii geom. sb., 29, Kharkov, 1986, 56–82 | Zbl
[11] Danilyuk I. I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975 | MR
[12] Boyarskii B. V., “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43(85):4 (1957), 451–503 | MR | Zbl
[13] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR
[14] Bers L., Nirenberg L., “On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications”, Convegno Internazionale Sulle Equazioni Derivate e Parziali, Cremonese, Roma, 1954, 111–138 | MR
[15] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977 | MR
[16] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Fizmatgiz, M., 1974
[17] Klimentov S. B., “Klassy $BMO$ obobschennykh analiticheskikh funktsii”, Vladikavkazsk. matem. zhurn., 8:1 (2006), 27–39 | MR | Zbl
[18] Simonenko I. B., “Kraevaya zadacha Rimana dlya $n$ par funktsii s izmerimymi koeffitsientami i ee primenenie k issledovaniyu singulyarnykh integralov v prostranstvakh $L_p$ s vesami”, Izv. AN SSSR, ser. matem., 28:2 (1964), 277–306 | MR | Zbl
[19] Klimentov S. B., “Kraevaya zadacha Rimana–Gilberta v klassakh Khardi obobschennykh analiticheskikh funktsii”, Izv. vuzov, Sev.-Kav. region, Estestv. nauki, 2004, no. 4, 3–5