The Riemann--Hilbert problem in Hardy classes for general first-order elliptic systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 36-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Riemann–Hilbert (Hilbert) problem in casses similar to the Hardy class for general first-order elliptic systems on a plane. We establish basic properties of Hardy classes for solutions to such systems and conditions of solvability of boundary-value problem. We construct the example that demonstrates that in the case of discontinuous coefficient of the boundary condition the picture of solvability can be different from the picture of solvability of the problem for holomorphic and generalized analytic functions. In particular, the problem can be unsolvable when its index is positive.
Keywords: Riemann–Hilbert problem, elliptic systems.
@article{IVM_2016_6_a3,
     author = {S. B. Klimentov},
     title = {The {Riemann--Hilbert} problem in {Hardy} classes for general first-order elliptic systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--47},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_6_a3/}
}
TY  - JOUR
AU  - S. B. Klimentov
TI  - The Riemann--Hilbert problem in Hardy classes for general first-order elliptic systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 36
EP  - 47
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_6_a3/
LA  - ru
ID  - IVM_2016_6_a3
ER  - 
%0 Journal Article
%A S. B. Klimentov
%T The Riemann--Hilbert problem in Hardy classes for general first-order elliptic systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 36-47
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_6_a3/
%G ru
%F IVM_2016_6_a3
S. B. Klimentov. The Riemann--Hilbert problem in Hardy classes for general first-order elliptic systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 36-47. http://geodesic.mathdoc.fr/item/IVM_2016_6_a3/

[1] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR

[2] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[3] Klimentov S. B., “Klassy Khardi obobschennykh analiticheskikh funktsii”, Izv. vuzov, Sev.-Kavk. region, Estestv. nauki, 2003, no. 3, 6–10 | Zbl

[4] Kalyanichenko S. I., Klimentov S. B., “Klassy Khardi reshenii uravneniya Beltrami”, Tr. uchastnikov Mezhdunar. shkoly-semin. po geometrii i analizu pamyati N. V. Efimova (Abrau-Dyurso, baza otdykha “Limanchik” Rostovskogo gos. un-ta, 5–11 sentyabrya 2006), ed. S. B. Klimentov, Izd-vo TsVVR, Rostov-na-Donu, 2006, 127–128

[5] Kalyanichenko S. I., Klimentov S. B., “Klassy Khardi reshenii uravneniya Beltrami”, Izv. vuzov, Sev.-Kavk. region, Estestv. nauki, 2008, no. 1, 7–10 | Zbl

[6] Klimentov S. B., “Predstavleniya “vtorogo roda” dlya reshenii klassov Khardi uravneniya Beltrami”, Sib. matem. zhurn., 55:2 (2014), 324–340 | MR | Zbl

[7] Soldatov A. P., “Prostranstvo Khardi reshenii ellipticheskikh sistem pervogo poryadka”, Dokl. RAN, 416:1 (2007), 26–30 | MR | Zbl

[8] Baratchart Laurent, Leblond Juliette, Rigat Stéphane, Russ Emmanuel, “Hardy spaces of the conjugate Beltrami equation”, J. Funct. Anal., 259:2 (2010), 384–427 | DOI | MR | Zbl

[9] Klimentov S. B., “Riemann-Hilbert boundary value problem for generalized analytic functions in Smirnov classes”, Global and Stochastic Anal. (Mind Reader Publ.), 1:2 (2011), 217–240 | Zbl

[10] Klimentov S. B., “Ob odnom sposobe postroeniya reshenii kraevykh zadach teorii izgibanii poverkhnostei polozhitelnoi krivizny”, Ukrainskii geom. sb., 29, Kharkov, 1986, 56–82 | Zbl

[11] Danilyuk I. I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975 | MR

[12] Boyarskii B. V., “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43(85):4 (1957), 451–503 | MR | Zbl

[13] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR

[14] Bers L., Nirenberg L., “On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications”, Convegno Internazionale Sulle Equazioni Derivate e Parziali, Cremonese, Roma, 1954, 111–138 | MR

[15] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977 | MR

[16] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Fizmatgiz, M., 1974

[17] Klimentov S. B., “Klassy $BMO$ obobschennykh analiticheskikh funktsii”, Vladikavkazsk. matem. zhurn., 8:1 (2006), 27–39 | MR | Zbl

[18] Simonenko I. B., “Kraevaya zadacha Rimana dlya $n$ par funktsii s izmerimymi koeffitsientami i ee primenenie k issledovaniyu singulyarnykh integralov v prostranstvakh $L_p$ s vesami”, Izv. AN SSSR, ser. matem., 28:2 (1964), 277–306 | MR | Zbl

[19] Klimentov S. B., “Kraevaya zadacha Rimana–Gilberta v klassakh Khardi obobschennykh analiticheskikh funktsii”, Izv. vuzov, Sev.-Kav. region, Estestv. nauki, 2004, no. 4, 3–5