Optimality conditions for extremal controls in bilinear and quadratic problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 86-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of optimization of bilinear functional with respect to linear phase system and modular control constraint. We obtain sufficient conditions of optimality for extremal controls. They complement the maximum principle and preserve the complexity of its implementation. These conditions are presented in the form of inequalities for functions of one variable on the time interval. The optimization problem for quadratic functional is reduced to the bilinear case with the help of the adjoint matrix function.
Keywords: non-convex optimal control problems, the maximum principle, sufficient optimality conditions.
@article{IVM_2016_5_a7,
     author = {V. A. Srochko and V. G. Antonik},
     title = {Optimality conditions for extremal controls in bilinear and quadratic problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--92},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_5_a7/}
}
TY  - JOUR
AU  - V. A. Srochko
AU  - V. G. Antonik
TI  - Optimality conditions for extremal controls in bilinear and quadratic problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 86
EP  - 92
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_5_a7/
LA  - ru
ID  - IVM_2016_5_a7
ER  - 
%0 Journal Article
%A V. A. Srochko
%A V. G. Antonik
%T Optimality conditions for extremal controls in bilinear and quadratic problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 86-92
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_5_a7/
%G ru
%F IVM_2016_5_a7
V. A. Srochko; V. G. Antonik. Optimality conditions for extremal controls in bilinear and quadratic problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 86-92. http://geodesic.mathdoc.fr/item/IVM_2016_5_a7/

[1] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[2] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Matem., 2009, no. 1, 3–43 | MR | Zbl

[3] Strekalovskii A. S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[4] Antipina N. V., Dykhta V. A., “Lineinye funktsii Lyapunova–Krotova i dostatochnye usloviya optimalnosti v forme printsipa maksimuma”, Izv. vuzov. Matem., 2002, no. 12, 11–22 | MR | Zbl

[5] Srochko V. A., Antonik V. G., “Dostatochnye usloviya optimalnosti ekstremalnykh upravlenii na osnove formul prirascheniya funktsionala”, Izv. vuzov. Matem., 2014, no. 8, 96–102 | MR | Zbl