On operator monotone and operator convex functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 70-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish monotonicity and convexity criteria for a continuous function $f\colon\mathbb R^+\to\mathbb R$ with respect to any $C^*$-algebra. We obtain some estimates for noncompactness measure of $W^*$-algebra elements products differences. We also give a commutativity criterion for a positive $\tau$-measurable operator and a positive operator from a von Neumann algebra.
Keywords: Hilbert space, von Neumann algebra, $C^*$-algebra, $W^*$-algebra, operator monotone function, operator convex function, measure of noncompactness, trace, measurable operator, commutativity of operators.
@article{IVM_2016_5_a4,
     author = {A. M. Bikchentaev},
     title = {On operator monotone and operator convex functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--74},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_5_a4/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - On operator monotone and operator convex functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 70
EP  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_5_a4/
LA  - ru
ID  - IVM_2016_5_a4
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T On operator monotone and operator convex functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 70-74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_5_a4/
%G ru
%F IVM_2016_5_a4
A. M. Bikchentaev. On operator monotone and operator convex functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 70-74. http://geodesic.mathdoc.fr/item/IVM_2016_5_a4/