Inverse problem of hydrodynamics for doubly connected domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 41-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an inverse problem of hydrodynamics for flow past pair of aerofoils. We find a general form of its solution. The key part of problem's solving is to determine numerical parameters defining flow domain and complex velocity in it up to conformal mapping (the parameters problem). The solvability of parameters problem is proved for various flow schemes. For that we essentially use the interpretation of the problem in terms of Riemann surface and the Riemann surfaces theory.
Keywords: inverse problem of hydrodynamics, streamline, flow scheme, Riemann surface
Mots-clés : torus.
@article{IVM_2016_5_a2,
     author = {E. V. Semenko},
     title = {Inverse problem of hydrodynamics for doubly connected domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--58},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_5_a2/}
}
TY  - JOUR
AU  - E. V. Semenko
TI  - Inverse problem of hydrodynamics for doubly connected domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 41
EP  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_5_a2/
LA  - ru
ID  - IVM_2016_5_a2
ER  - 
%0 Journal Article
%A E. V. Semenko
%T Inverse problem of hydrodynamics for doubly connected domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 41-58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_5_a2/
%G ru
%F IVM_2016_5_a2
E. V. Semenko. Inverse problem of hydrodynamics for doubly connected domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 41-58. http://geodesic.mathdoc.fr/item/IVM_2016_5_a2/

[1] Elizarov A. M., Ilinskii N. B., Potashev A. V., Obratnye kraevye zadachi aerogidrodinamiki, Nauka, M., 1994 | MR

[2] Abzalilov D. F. Volkov P. A., Ilinskii N. B., “Reshenie obratnoi kraevoi zadachi aerogidrodinamiki dlya dvukhelementnogo krylovogo profilya”, Izv. RAN. Mekhanika zhidkosti i gaza, 2004, no. 3, 16–24 | MR | Zbl

[3] Mardanov R. F., “Ob odnom podkhode k proektirovaniyu mnogoelementnogo krylovogo profilya”, Aeromekhanika i gazovaya dinamika, 2003, no. 2, 31–36

[4] Mardanov R. F., “Priblizhennyi metod proektirovaniya trekhelementnogo krylovogo profilya”, Mekhanika zhidkosti i gaza, Vestn. Nizhegorodsk. un-ta im. N. I. Lobachevskogo, 2011, no. 4(3), 969–970

[5] James R. M., “The theory and design of two-aerofoil lifting systems”, Comput. Meth. Appl. Mech. and Eng., 10:1 (1977), 13–42 | DOI

[6] Gopalarathnam A., Selig M., “Multipoint inverse method for multielement airfoil design”, J. Aircraft, 35:3 (1998), 398–404 | DOI

[7] Semenko E. V., “Ekvivalentnost granichnykh skorostei i razlichnye skhemy techeniya v obratnoi kraevoi zadache aerogidrodinamiki”, Sib. zhurn. industrialnoi matem., 14:4(48) (2011), 98–110 | MR | Zbl

[8] Semenko E. V., “Flows in torus classification: schemes of two-dimensional flows past a pair of aerofoils”, IMA J. Appl. Math., 75:6 (2010), 811–832 | DOI | MR | Zbl

[9] Semenko E. V., “Techeniya na rimanovoi poverkhnosti: klassifikatsiya techenii na tore”, Sib. zhurn. industrialnoi matem., 12:1(37) (2009), 136–150 | MR | Zbl

[10] Semenko E. V., “Obschii vid resheniya zadachi obtekaniya na tore”, Sib. zhurn. industrialnoi matem., 13:2(42) (2010), 124–134 | MR | Zbl

[11] Golubev V. V., K teorii predkrylka i zakrylka, Tr. po aerodinamike, Gostekhizdat, M., 1957

[12] Golubev V. V., K teorii techenii na dvulistnoi rimanovoi poverkhnosti, Tr. po aerodinamike, Gostekhizdat, M., 1957

[13] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR