Invariants and rings of quotients of $H$-semiprime $H$-module algebra satisfying a~polynomial identity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 22-40
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an action of a finite-dimensional Hopf algebra $H$ on a PI-algebra. We prove that an $H$-semiprime $H$-module algebra $A$ has a Frobenius artinian classical ring of quotients $Q$ if $A$ has a finite set of $H$-prime ideals with zero intersection. The ring of quotients $Q$ is an $H$-semisimple $H$-module algebra and finitely generated module over the subalgebra of central invariants. Moreover, if the algebra $A$ is projective module of constant rank over its center then $A$ is integral over the subalgebra of central invariants.
Keywords:
Hopf algebras, invariant theory, PI-algebras, rings of quotients.
@article{IVM_2016_5_a1,
author = {M. S. Eryashkin},
title = {Invariants and rings of quotients of $H$-semiprime $H$-module algebra satisfying a~polynomial identity},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {22--40},
publisher = {mathdoc},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_5_a1/}
}
TY - JOUR AU - M. S. Eryashkin TI - Invariants and rings of quotients of $H$-semiprime $H$-module algebra satisfying a~polynomial identity JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 22 EP - 40 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_5_a1/ LA - ru ID - IVM_2016_5_a1 ER -
M. S. Eryashkin. Invariants and rings of quotients of $H$-semiprime $H$-module algebra satisfying a~polynomial identity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 22-40. http://geodesic.mathdoc.fr/item/IVM_2016_5_a1/