New asymptotic representation of a singular integral with the Hilbert kernel near a point of weak continuity of its density
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 73-78
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the behavior of a singular integral with the Hilbert kernel near a fixed point, where the density vanishes as the value inverse to the logarithm of the module of the logarithm of the distance from this point to a variable one, and the integral is not necessarily convergent.
Keywords:
singular integral, weak continuity.
Mots-clés : Hilbert kernel, Hölder condition
Mots-clés : Hilbert kernel, Hölder condition
@article{IVM_2016_4_a8,
author = {R. B. Salimov},
title = {New asymptotic representation of a~singular integral with the {Hilbert} kernel near a~point of weak continuity of its density},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {73--78},
year = {2016},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_4_a8/}
}
TY - JOUR AU - R. B. Salimov TI - New asymptotic representation of a singular integral with the Hilbert kernel near a point of weak continuity of its density JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 73 EP - 78 IS - 4 UR - http://geodesic.mathdoc.fr/item/IVM_2016_4_a8/ LA - ru ID - IVM_2016_4_a8 ER -
%0 Journal Article %A R. B. Salimov %T New asymptotic representation of a singular integral with the Hilbert kernel near a point of weak continuity of its density %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2016 %P 73-78 %N 4 %U http://geodesic.mathdoc.fr/item/IVM_2016_4_a8/ %G ru %F IVM_2016_4_a8
R. B. Salimov. New asymptotic representation of a singular integral with the Hilbert kernel near a point of weak continuity of its density. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 73-78. http://geodesic.mathdoc.fr/item/IVM_2016_4_a8/
[1] Salimov R. B., “K povedeniyu singulyarnogo integrala s yadrom Gilberta vblizi tochki slaboi nepreryvnosti plotnosti”, Izv. vuzov. Matem., 2013, no. 6, 37–44 | MR | Zbl
[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR
[3] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR
[4] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. II, Nauka, M., 1970
[5] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR