Method of plane waves for hyperbolic system with several spatial variables
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 68-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the 80ies of the last century Riemann's method for hyperbolic equations of second order was extended to hyperbolic systems of general form with one spatial variable. In this paper, this result is extended to hyperbolic systems of general form with several spatial variables with coefficients that depend on time.
Keywords: superposition of plane waves, Riemann matrices of the first and second kind, spatially homogeneous case.
@article{IVM_2016_4_a7,
     author = {A. M. Romanovskaya},
     title = {Method of plane waves for hyperbolic system with several spatial variables},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {68--72},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_4_a7/}
}
TY  - JOUR
AU  - A. M. Romanovskaya
TI  - Method of plane waves for hyperbolic system with several spatial variables
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 68
EP  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_4_a7/
LA  - ru
ID  - IVM_2016_4_a7
ER  - 
%0 Journal Article
%A A. M. Romanovskaya
%T Method of plane waves for hyperbolic system with several spatial variables
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 68-72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_4_a7/
%G ru
%F IVM_2016_4_a7
A. M. Romanovskaya. Method of plane waves for hyperbolic system with several spatial variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 68-72. http://geodesic.mathdoc.fr/item/IVM_2016_4_a7/

[1] Romanovskii R. K., “O matritsakh Rimana pervogo i vtorogo roda”, DAN SSSR, 267:2 (1982), 577–580 | MR

[2] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR

[3] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974

[4] Egorov Yu. V., Lineinye differentsialnye uravneniya glavnogo tipa, Nauka, M., 1984 | MR

[5] Romanovskaya A. M., “Ob ustoichivosti reshenii zadachi Koshi dlya giperbolicheskoi sistemy vtorogo poryadka s periodicheskimi koeffitsientami”, Izv. vuzov. Matem., 1987, no. 7, 44–48 | MR | Zbl

[6] Romanovskaya A. M., Issledovanie ustoichivosti reshenii zadachi Koshi dlya giperbolicheskoi sistemy vtorogo poryadka s periodicheskimi koeffitsientami, Izd-vo S-print, Omsk, 2006