On reduction of multidimensional first order equations with multihomogeneous function of derivatives
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 57-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an analysis of solutions to multidimensional first order equation with an arbitrary number of independent variables. It is assumed that the nonlinear part of the equation is a multihomogeneous function of derivatives. The reduction of an original equation is executed for the class of solutions depending on linear combinations of initial variables, each of which contains only a certain subset of variables. It is shown that the reduced equation has solutions in the form of some arbitrary functions and solutions in the form of some generalized polynomials. We also consider the cases of additional, multiplicational and combined separation of variables.
Keywords: partial differential equation, reduced equation, multihomogeneous function, variables separation method.
@article{IVM_2016_4_a6,
     author = {I. V. Rakhmelevich},
     title = {On reduction of multidimensional first order equations with multihomogeneous function of derivatives},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--67},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_4_a6/}
}
TY  - JOUR
AU  - I. V. Rakhmelevich
TI  - On reduction of multidimensional first order equations with multihomogeneous function of derivatives
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 57
EP  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_4_a6/
LA  - ru
ID  - IVM_2016_4_a6
ER  - 
%0 Journal Article
%A I. V. Rakhmelevich
%T On reduction of multidimensional first order equations with multihomogeneous function of derivatives
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 57-67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_4_a6/
%G ru
%F IVM_2016_4_a6
I. V. Rakhmelevich. On reduction of multidimensional first order equations with multihomogeneous function of derivatives. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 57-67. http://geodesic.mathdoc.fr/item/IVM_2016_4_a6/

[1] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, Fizmatlit, M., 2003

[2] Kamke E., Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966

[3] Rakhmelevich I. V., “O primenenii metoda razdeleniya peremennykh k uravneniyam matematicheskoi fiziki, soderzhaschim odnorodnye funktsii ot proizvodnykh”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 2013, no. 3, 37–44

[4] Rakhmelevich I. V., “Ob uravneniyakh matematicheskoi fiziki, soderzhaschikh multiodnorodnye funktsii ot proizvodnykh”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 2014, no. 1, 42–50

[5] Atsel Ya., Dombr Zh., Funktsionalnye uravneniya s neskolkimi peremennymi, Fizmatlit, M., 2003

[6] Polyanin A. D., Zaitsev V. F., Zhurov A. I., Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005