On reduction of multidimensional first order equations with multihomogeneous function of derivatives
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 57-67
Voir la notice de l'article provenant de la source Math-Net.Ru
We present an analysis of solutions to multidimensional first order equation with an arbitrary number of independent variables. It is assumed that the nonlinear part of the equation is a multihomogeneous function of derivatives. The reduction of an original equation is executed for the class of solutions depending on linear combinations of initial variables, each of which contains only a certain subset of variables. It is shown that the reduced equation has solutions in the form of some arbitrary functions and solutions in the form of some generalized polynomials. We also consider the cases of additional, multiplicational and combined separation of variables.
Keywords:
partial differential equation, reduced equation, multihomogeneous function, variables separation method.
@article{IVM_2016_4_a6,
author = {I. V. Rakhmelevich},
title = {On reduction of multidimensional first order equations with multihomogeneous function of derivatives},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {57--67},
publisher = {mathdoc},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_4_a6/}
}
TY - JOUR AU - I. V. Rakhmelevich TI - On reduction of multidimensional first order equations with multihomogeneous function of derivatives JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 57 EP - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_4_a6/ LA - ru ID - IVM_2016_4_a6 ER -
I. V. Rakhmelevich. On reduction of multidimensional first order equations with multihomogeneous function of derivatives. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 57-67. http://geodesic.mathdoc.fr/item/IVM_2016_4_a6/