Keywords: smooth curve, canonical frame, Elie Cartan method.
@article{IVM_2016_4_a3,
author = {M. I. Kabanova and A. M. Shelekhov},
title = {{\CYRS}anonical frames of a~curve in multidimensional affine space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {23--31},
year = {2016},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_4_a3/}
}
M. I. Kabanova; A. M. Shelekhov. Сanonical frames of a curve in multidimensional affine space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 23-31. http://geodesic.mathdoc.fr/item/IVM_2016_4_a3/
[1] Blyashke V., Vvedenie v geometriyu tkanei, Fizmatgiz, M., 1959 | MR
[2] Shirokov P. A., Shirokov A. P., Affinnaya differentsialnaya geometriya, Fizmatgiz, 1959
[3] Davis D., “Generic affine differential geometry of curves in $\mathbb R^n$”, Proc. Royal Soc. Edinburgh A, 136 (2006), 1195–1205 | DOI | MR | Zbl
[4] Favar Zh., Kurs lokalnoi differentsialnoi geometrii, M., 1960
[5] Izumiya S., Sano T., “Generic affine differential geometry of plane curves”, Proc. Royal Soc. Edinburgh A, 128 (1998), 301–314 | DOI | MR | Zbl
[6] Izumiya S., Sano T., “Generic affine differential geometry of space curves”, Proc. Edinburgh Math. Soc., 41 (1998), 315–324 | DOI | MR | Zbl
[7] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Itogi nauki i tekhn. Probl. geometrii, 9, VINITI, M., 1979 | MR | Zbl