On properties of infimal topology of a~map space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 87-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of the infimal topology $\tau_\mathrm{inf}$ which is the infimum of the family of all topologies of uniform convergence defined on the set $C(X,Y)$ of continuous maps into a metrizable space $Y$. One of the main results of the research consists in obtaining necessary and sufficient condition for the topology $\tau_\mathrm{inf}$ to have the Fréchet–Urysohn property. We also establish necessary and sufficient conditions for coincidence of the topology $\tau_\mathrm{inf}$ and a topology of uniform convergence $\tau_\mu$.
Keywords: map space, topology of uniform convergence, infimal topology.
@article{IVM_2016_4_a10,
     author = {V. L. Timokhovich and D. S. Frolova},
     title = {On properties of infimal topology of a~map space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--99},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_4_a10/}
}
TY  - JOUR
AU  - V. L. Timokhovich
AU  - D. S. Frolova
TI  - On properties of infimal topology of a~map space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 87
EP  - 99
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_4_a10/
LA  - ru
ID  - IVM_2016_4_a10
ER  - 
%0 Journal Article
%A V. L. Timokhovich
%A D. S. Frolova
%T On properties of infimal topology of a~map space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 87-99
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_4_a10/
%G ru
%F IVM_2016_4_a10
V. L. Timokhovich; D. S. Frolova. On properties of infimal topology of a~map space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 87-99. http://geodesic.mathdoc.fr/item/IVM_2016_4_a10/

[1] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[2] Timokhovich V. L., Frolova D. S., “O nekotorykh topologiyakh na mnozhestve otobrazhenii”, Vestn. BGU. Ser. 1, 2009, no. 3, 84–89 | MR | Zbl

[3] Kukrak G. O., Timokhovich V. L., “Nekotorye topologicheskie svoistva prostranstva otobrazhenii”, Vestn. BGU. Ser. 1, 2010, no. 1, 144–149 | MR | Zbl

[4] Frolova D. S., “O supremalnoi topologii prostranstva otobrazhenii”, Vestn. BGU. Ser. 1, 2011, no. 1, 116–117 | MR | Zbl

[5] Timokhovich V. L., Frolova D. S., “Ob infimalnoi topologii prostranstva otobrazhenii”, Vestn. BGU. Ser. 1, 2011, no. 2, 136–140 | MR | Zbl

[6] Timokhovich V. L., Frolova D. S., “O sobstvennosti i dopustimosti v smysle Arensa–Dugundzhi infimuma topologii ravnomernoi skhodimosti”, Dokl. NAN Belarusi, 56:2 (2012), 22–26

[7] Timokhovich V. L., Frolova D. S., “Topologii ravnomernoi skhodimosti. Sobstvennost (v smysle Arensa–Dugundzhi) i sekventsialnaya sobstvennost”, Izv. vuzov. Matem., 2013, no. 9, 45–58 | MR | Zbl

[8] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[9] Hart K. P., Nagata J., Vaughan J. E., Encyclopedia of general topology, Elsevier, 2004 | MR | Zbl

[10] Hausdorff F., “Erweiterung einer Homöomorphie”, Fund. Math., 16 (1930), 353–360 | Zbl

[11] Aleksandrov P. S., Uryson P. S., Memuar o kompaktnykh topologicheskikh prostranstvakh, Nauka, M., 1971 | MR

[12] Arens R., Dugundji J., “Topologies for function spaces”, Pacif. J. Math., 1:1 (1951), 5–31 | DOI | MR | Zbl

[13] Staum R., “The algebra of bounded continuous functions into a nonarchimedean field”, Pacif. J. Math., 50:1 (1974), 169–185 | DOI | MR | Zbl