Approximation of double-valued function by an algebraic polynomial
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 8-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the minimax model of nonlinear structure for approximation of double-valued function by an algebraic polynomial. We give the conditions of optimality in the form of far-reaching generalization of P. L. Chebyshev's alternance conditions in the problem of approximation of a function by a polynomial.
Keywords: minimax, nonsmooth analysis, double-valued function, selector, approximating polynomial.
@article{IVM_2016_4_a1,
     author = {I. Yu. Vygodchikova},
     title = {Approximation of double-valued function by an algebraic polynomial},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {8--13},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_4_a1/}
}
TY  - JOUR
AU  - I. Yu. Vygodchikova
TI  - Approximation of double-valued function by an algebraic polynomial
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 8
EP  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_4_a1/
LA  - ru
ID  - IVM_2016_4_a1
ER  - 
%0 Journal Article
%A I. Yu. Vygodchikova
%T Approximation of double-valued function by an algebraic polynomial
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 8-13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_4_a1/
%G ru
%F IVM_2016_4_a1
I. Yu. Vygodchikova. Approximation of double-valued function by an algebraic polynomial. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 8-13. http://geodesic.mathdoc.fr/item/IVM_2016_4_a1/