On uniqueness theorem for a~class of functions analytic in a~halfplane
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a uniqueness theorem for a class of analytic functions of exponential type in a halfplane.
Keywords: analytic function, singular limit function.
@article{IVM_2016_4_a0,
     author = {B. V. Vinnitskii and T. I. Hishchak},
     title = {On uniqueness theorem for a~class of functions analytic in a~halfplane},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--7},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_4_a0/}
}
TY  - JOUR
AU  - B. V. Vinnitskii
AU  - T. I. Hishchak
TI  - On uniqueness theorem for a~class of functions analytic in a~halfplane
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 3
EP  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_4_a0/
LA  - ru
ID  - IVM_2016_4_a0
ER  - 
%0 Journal Article
%A B. V. Vinnitskii
%A T. I. Hishchak
%T On uniqueness theorem for a~class of functions analytic in a~halfplane
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 3-7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_4_a0/
%G ru
%F IVM_2016_4_a0
B. V. Vinnitskii; T. I. Hishchak. On uniqueness theorem for a~class of functions analytic in a~halfplane. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 3-7. http://geodesic.mathdoc.fr/item/IVM_2016_4_a0/

[1] Levin B. Ya., Lectures on entire functions, AMS, Providence, RI, 1996 | MR | Zbl

[2] Kusis P. L., Vvedenie v teoriyu prostranstv $H^p$, Nauka, M., 1984 | MR

[3] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR

[4] Zhang Y. H., Deng G. T., Kou K. I., “On the lower bound for a class of harmonic functions in the half space”, Acta Math. Sci., 32:4 (2012), 1487–1494 | DOI | MR | Zbl

[5] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986 | MR

[6] Anderson J. M., “Muntz–Szasz type approximation and the angular growth of lacunary integral functions”, Trans. Amer. Math. Soc., 169:7 (1972), 237–248 | MR | Zbl

[7] Fuchs W. H. J., “A generalization of Carlson's theorem”, J. London Math. Soc., 21 (1946), 106–110 | DOI | MR | Zbl