Bol three-webs with covariant constant curvature tensor
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 82-92

Voir la notice de l'article provenant de la source Math-Net.Ru

We find complete system of tensor relations characterizing the class of multidimensional middle Bol three-webs with covariant constant curvature tensor and ascertain the algebraic sense of these relations. We prove the existence of such webs and lay the foundation of their classification in terms of torsion tensor rank. We show that $6$-dimensional non-group webs of such type are the known flexible webs $E_1$ and $E_2$.
Keywords: three-web, middle Bol three-web, flexible three-web, $W$-algebra, Chern connection of a three-web, commutator, holonomy algebra.
Mots-clés : associator
@article{IVM_2016_3_a8,
     author = {A. M. Shelekhov and E. A. Onoprienko},
     title = {Bol three-webs with covariant constant curvature tensor},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {82--92},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_3_a8/}
}
TY  - JOUR
AU  - A. M. Shelekhov
AU  - E. A. Onoprienko
TI  - Bol three-webs with covariant constant curvature tensor
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 82
EP  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_3_a8/
LA  - ru
ID  - IVM_2016_3_a8
ER  - 
%0 Journal Article
%A A. M. Shelekhov
%A E. A. Onoprienko
%T Bol three-webs with covariant constant curvature tensor
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 82-92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_3_a8/
%G ru
%F IVM_2016_3_a8
A. M. Shelekhov; E. A. Onoprienko. Bol three-webs with covariant constant curvature tensor. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 82-92. http://geodesic.mathdoc.fr/item/IVM_2016_3_a8/