Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_3_a5, author = {Nguyen Buong and Tran Thi Huong and Nguyen Thi Thu Thuy}, title = {A quasi-residual principle in regularization for a~common solution of a~system of nonlinear monotone ill-posed equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {55--64}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_3_a5/} }
TY - JOUR AU - Nguyen Buong AU - Tran Thi Huong AU - Nguyen Thi Thu Thuy TI - A quasi-residual principle in regularization for a~common solution of a~system of nonlinear monotone ill-posed equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 55 EP - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_3_a5/ LA - ru ID - IVM_2016_3_a5 ER -
%0 Journal Article %A Nguyen Buong %A Tran Thi Huong %A Nguyen Thi Thu Thuy %T A quasi-residual principle in regularization for a~common solution of a~system of nonlinear monotone ill-posed equations %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2016 %P 55-64 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2016_3_a5/ %G ru %F IVM_2016_3_a5
Nguyen Buong; Tran Thi Huong; Nguyen Thi Thu Thuy. A quasi-residual principle in regularization for a~common solution of a~system of nonlinear monotone ill-posed equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 55-64. http://geodesic.mathdoc.fr/item/IVM_2016_3_a5/
[1] Alber Ya. I., Ryazantseva Ir. P., Nonlinear ill-posed problems of monotone types, Springer Verlag, 2006 | MR
[2] Haltmeier M., Kowar R., Leitao A., Scherzer O., “Kaczmarz methods for nonlinear ill-posed equations I: convergence analysis”, Inverse Probl. and Imag., 1:2 (2007), 289–298 | DOI | MR | Zbl
[3] Haltmeier M., Kowar R., Leitao A., Scherzer O., “Kaczmarz methods for nonlinear ill-posed equations II: application”, Inverse Probl. and Imag., 1:2 (2007), 507–523 | MR | Zbl
[4] Cezaro A. D., Haltmeier M., Leitao A., Scherzer O., “On steepest-descent-Kaczmarz method for regularizing systems of nonlinear ill-posed equations”, Appl. Math. and Comput., 202:2 (2008), 596–607 | DOI | MR | Zbl
[5] Baumeister J., Kaltenbacher B., Leitao A., “On Levenberg–Marquardt Kaczmarz methods for regularizing system of nonlinear ill-posed equations”, Inverse Probl. and Imag., 4:1 (2010), 335–350 | DOI | MR | Zbl
[6] Cezaro A. D., Baumeister J., Leitao A., “Modified iterated Tikhonov method for solving system of nonlinear ill-posed equations”, Inverse Probl. and Imag., 5:1 (2010), 1–17 | DOI | MR
[7] Gol'shtein E. G., Tret'yakov N. V., Modified lagrangians and monotone maps in optimization, Wiley, New York, 1996 | MR | Zbl
[8] Badriev I. B., Zadvornov O. A., “A decomposition method for variational inequalities of the second kind with strongly inverse-monotone operators”, Diff. Equat., 39:7 (2003), 936–944 | DOI | MR | Zbl
[9] Badriyev I. B., Zadvornov O. A., Ismagilov L. N., Skvortsov E. V., “Solution of plane seepage problems for a multivalued law when there is a point source”, J. Appl. Math. and Mechan., 73:4 (2009), 434–442 | DOI | MR | Zbl
[10] Buong Ng., “Regularization for unconstrained vector optimization of convex functionals in Banach spaces”, Zh. Vychisl. Matem. i Matem. Fiziki, 46:3 (2006), 372–378 | MR | Zbl
[11] Buong Ng., “Regularization extragradient method for Lipschitz continuous mappings and inverse strongly monotone mappings in Hilbert spaces”, Zh. Vychisl. Matem. i Matem. Fiziki, 48:11 (2008), 1932 | MR
[12] Kim J. K., Buong Ng., “Regularization inertial proximal point algorithm for monotone hemicontinuous mapping and inverse strongly-monotone mappings in Hilbert spaces”, J. Inequalities and Appl., 2010 (2010), Article ID 451916 | MR | Zbl
[13] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR
[14] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Acad. Bucuresti Romania, 1976 | MR | Zbl