A quasi-residual principle in regularization for a~common solution of a~system of nonlinear monotone ill-posed equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the Browder–Tikhonov regularization method, for finding a common solution for a system of nonlinear ill-posed equations with potential, hemicontinuous and monotone mappings in Banach spaces. We give a principle, named quasi-residual, to choose a value of the regularization parameter and an estimate of convergence rates for the regularized solutions.
Keywords: monotone operators, hemi-continuous, strictly convex Banach space, Fréchet differentiable, the Browder–Tikhonov regularization method.
@article{IVM_2016_3_a5,
     author = {Nguyen Buong and Tran Thi Huong and Nguyen Thi Thu Thuy},
     title = {A quasi-residual principle in regularization for a~common solution of a~system of nonlinear monotone ill-posed equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--64},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_3_a5/}
}
TY  - JOUR
AU  - Nguyen Buong
AU  - Tran Thi Huong
AU  - Nguyen Thi Thu Thuy
TI  - A quasi-residual principle in regularization for a~common solution of a~system of nonlinear monotone ill-posed equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 55
EP  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_3_a5/
LA  - ru
ID  - IVM_2016_3_a5
ER  - 
%0 Journal Article
%A Nguyen Buong
%A Tran Thi Huong
%A Nguyen Thi Thu Thuy
%T A quasi-residual principle in regularization for a~common solution of a~system of nonlinear monotone ill-posed equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 55-64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_3_a5/
%G ru
%F IVM_2016_3_a5
Nguyen Buong; Tran Thi Huong; Nguyen Thi Thu Thuy. A quasi-residual principle in regularization for a~common solution of a~system of nonlinear monotone ill-posed equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 55-64. http://geodesic.mathdoc.fr/item/IVM_2016_3_a5/

[1] Alber Ya. I., Ryazantseva Ir. P., Nonlinear ill-posed problems of monotone types, Springer Verlag, 2006 | MR

[2] Haltmeier M., Kowar R., Leitao A., Scherzer O., “Kaczmarz methods for nonlinear ill-posed equations I: convergence analysis”, Inverse Probl. and Imag., 1:2 (2007), 289–298 | DOI | MR | Zbl

[3] Haltmeier M., Kowar R., Leitao A., Scherzer O., “Kaczmarz methods for nonlinear ill-posed equations II: application”, Inverse Probl. and Imag., 1:2 (2007), 507–523 | MR | Zbl

[4] Cezaro A. D., Haltmeier M., Leitao A., Scherzer O., “On steepest-descent-Kaczmarz method for regularizing systems of nonlinear ill-posed equations”, Appl. Math. and Comput., 202:2 (2008), 596–607 | DOI | MR | Zbl

[5] Baumeister J., Kaltenbacher B., Leitao A., “On Levenberg–Marquardt Kaczmarz methods for regularizing system of nonlinear ill-posed equations”, Inverse Probl. and Imag., 4:1 (2010), 335–350 | DOI | MR | Zbl

[6] Cezaro A. D., Baumeister J., Leitao A., “Modified iterated Tikhonov method for solving system of nonlinear ill-posed equations”, Inverse Probl. and Imag., 5:1 (2010), 1–17 | DOI | MR

[7] Gol'shtein E. G., Tret'yakov N. V., Modified lagrangians and monotone maps in optimization, Wiley, New York, 1996 | MR | Zbl

[8] Badriev I. B., Zadvornov O. A., “A decomposition method for variational inequalities of the second kind with strongly inverse-monotone operators”, Diff. Equat., 39:7 (2003), 936–944 | DOI | MR | Zbl

[9] Badriyev I. B., Zadvornov O. A., Ismagilov L. N., Skvortsov E. V., “Solution of plane seepage problems for a multivalued law when there is a point source”, J. Appl. Math. and Mechan., 73:4 (2009), 434–442 | DOI | MR | Zbl

[10] Buong Ng., “Regularization for unconstrained vector optimization of convex functionals in Banach spaces”, Zh. Vychisl. Matem. i Matem. Fiziki, 46:3 (2006), 372–378 | MR | Zbl

[11] Buong Ng., “Regularization extragradient method for Lipschitz continuous mappings and inverse strongly monotone mappings in Hilbert spaces”, Zh. Vychisl. Matem. i Matem. Fiziki, 48:11 (2008), 1932 | MR

[12] Kim J. K., Buong Ng., “Regularization inertial proximal point algorithm for monotone hemicontinuous mapping and inverse strongly-monotone mappings in Hilbert spaces”, J. Inequalities and Appl., 2010 (2010), Article ID 451916 | MR | Zbl

[13] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR

[14] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Acad. Bucuresti Romania, 1976 | MR | Zbl