Spectral properties of boundary-value problem with a~shift for wave equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 48-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the differential operator given by the wave equation with potential in characteristic triangle and boundary conditions: with shift on the characteristics and oblique derivative on noncharacteristic boundary. We obtain condition for the Volterra property of problem. In remaining cases we show the completeness of the root functions. For cases when the potential depends on a single variable, we study questions of the basis (not basis) property for the system of root functions.
Keywords: wave equation, Riesz basis, regular boundary conditions, eigenvalues, root functions.
@article{IVM_2016_3_a4,
     author = {N. A. Yessirkegenov and M. A. Sadybekov},
     title = {Spectral properties of boundary-value problem with a~shift for wave equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--54},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_3_a4/}
}
TY  - JOUR
AU  - N. A. Yessirkegenov
AU  - M. A. Sadybekov
TI  - Spectral properties of boundary-value problem with a~shift for wave equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 48
EP  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_3_a4/
LA  - ru
ID  - IVM_2016_3_a4
ER  - 
%0 Journal Article
%A N. A. Yessirkegenov
%A M. A. Sadybekov
%T Spectral properties of boundary-value problem with a~shift for wave equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 48-54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_3_a4/
%G ru
%F IVM_2016_3_a4
N. A. Yessirkegenov; M. A. Sadybekov. Spectral properties of boundary-value problem with a~shift for wave equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 48-54. http://geodesic.mathdoc.fr/item/IVM_2016_3_a4/

[1] Nakhushev A. M., “O nekotorykh nelokalnykh kraevykh zadachakh so smescheniem dlya uravneniya giperbolicheskogo i smeshannogo tipa”, Differents. uravneniya, 5:1 (1969), 44–59 | Zbl

[2] Kalmenov T. Sh., “Spektr kraevoi zadachi so smescheniem dlya volnovogo uravneniya”, Differents. uravneniya, 19:1 (1983), 75–78 | MR | Zbl

[3] Sadybekov M. A., Orynbasarov E. M., “Bazisnost sistemy sobstvennykh i prisoedinennykh funktsii kraevoi zadachi so smescheniem dlya volnovogo uravneniya”, Matem. zametki, 51:5 (1992), 86–89 | MR | Zbl

[4] Lomov I. S., “O bazisnosti na kompaktakh kornevykh funktsii differentsialnykh operatorov vtorogo poryadka”, Izv. vuzov. Matem., 1998, no. 4, 40–52 | MR

[5] Lomov I. S., “O svoistvakh kornevykh funktsii operatora Shturma–Liuvillya, razryvnykh na vsyudu plotnom mnozhestve”, Izv. vuzov. Matem., 1990, no. 8, 35–44 | MR | Zbl

[6] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966

[7] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[8] Keselman G. M., “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matem., 1964, no. 2, 82–93 | MR | Zbl

[9] Mikhailov V. P., “O bazisakh Rissa v $L_2(0,1)$”, DAN SSSR, 144:5 (1962), 981–984

[10] Veliev O. A., Shkalikov A. A., “O bazisnosti Rissa sobstvennykh i prisoedinennykh funktsii periodicheskoi i antiperiodicheskoi zadach Shturma–Liuvillya”, Matem. zametki, 85:5 (2009), 671–686 | DOI | MR | Zbl