On the pointwise universality of the partial sums of Fourier series by the generalized Walsh system
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 38-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problems of pointwise universality and topological transitivity of the partial sums of Fourier series of generalized Walsh system.
Keywords: generalized Walsh system, pointwise universality, topological transitivity.
@article{IVM_2016_3_a3,
     author = {S. A. Episkoposyan and J. M\"uller},
     title = {On the pointwise universality of the partial sums of {Fourier} series by the generalized {Walsh} system},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {38--47},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_3_a3/}
}
TY  - JOUR
AU  - S. A. Episkoposyan
AU  - J. Müller
TI  - On the pointwise universality of the partial sums of Fourier series by the generalized Walsh system
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 38
EP  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_3_a3/
LA  - ru
ID  - IVM_2016_3_a3
ER  - 
%0 Journal Article
%A S. A. Episkoposyan
%A J. Müller
%T On the pointwise universality of the partial sums of Fourier series by the generalized Walsh system
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 38-47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_3_a3/
%G ru
%F IVM_2016_3_a3
S. A. Episkoposyan; J. Müller. On the pointwise universality of the partial sums of Fourier series by the generalized Walsh system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 38-47. http://geodesic.mathdoc.fr/item/IVM_2016_3_a3/

[1] Grosse-Erdmann K.-G., Peris M. A., Linear chaos, Springer, London, 2011 | MR | Zbl

[2] Fekete M., “Untersuchungen über absolut Reihen, mit Anwendung auf dirichletsche und Fouriersche Reihen”, Math. És. Termész. Ért., 32 (1914), 389–425 | Zbl

[3] Birkhoff G. D., “Démonstration d'un théorème élémentaire sur les fonctions entières”, C. R. Acad. Sci. Paris, 189 (1929), 473–475 | Zbl

[4] Marcinkiewicz J., “Sur les nombres dérivés”, Fund. Math., 24 (1935), 305–308 | Zbl

[5] MacLane G. R., “Sequences of derivatives and normal families”, J. Anal. Math., 2 (1952), 72–87 | DOI | MR | Zbl

[6] Menshov D. E., “Ob universalnykh trigonometricheskikh ryadakh”, DAN SSSR, 49:2 (1945), 79–82

[7] Grosse-Erdmann K.-G., Holomorphe Monster und universelle Funktionen, Dissertation, University of Trier, Trier, 1987 | MR

[8] Chrestenson H. E., “A class of generalized Walsh functions”, Pacific J. Math., 5:1 (1955), 17–31 | DOI | MR | Zbl

[9] Pely R., “A remarkable systems of orthogonal functions”, Proc. London Math. Soc., 34:1 (1932), 241–279

[10] Fine J., “The generalized Walsh functions”, Trans. Amer. Math. Soc., 69 (1950), 66–77 | DOI | MR | Zbl

[11] Watari C., “On generalized Walsh–Fourier series”, Tohoku Math. J., 10:3 (1958), 211–241 | DOI | MR | Zbl

[12] Vilenkin N., “On a class of complete orthonormal systems”, AMS Transl., 28 (1963), 1–35 | MR | Zbl

[13] Young W., “Mean convergence of generalized Walsh–Fourier series”, Trans. Amer. Math. Soc., 218 (1976), 311–320 | DOI | MR | Zbl

[14] Müller J., “Continuous functions with universally divergent Fourier series on small subsets of the circle”, C. R. Math. Acad. Sci. Paris, 348:21–22 (2010), 1155–1158 | DOI | MR | Zbl

[15] Shkarin S., “Pointwise universal trigonometric series”, J. Math. Anal. Appl., 360:2 (2009), 754–758 | DOI | MR | Zbl

[16] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, teoriya i primeneniya, Moskva, 1987 | MR

[17] Davidson K. R., Donsig A. P., Real analysis and applications: theory in practice, Springer, N.Y., 2010 | MR | Zbl