Boundary problem for Lavrent'ev--Bitsadze equation with two internal lines of change of a~type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 23-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem with boundary conditions of the first and second kind on the boundary of the rectangular area for an equation with two internal perpendicular lines of change of a type. With the use of spectral method we prove the uniqueness and the existence of a solution. Obtained in the process of separation of variables, the eigenvalue problem for an ordinary differential equation is not self-adjoint, and the system of root functions is not orthogonal. We construct corresponding biorthogonal system of functions and prove its completeness, based on which we establish a criterion for the uniqueness of the problem. A solution to the problem is constructed as a sum of biorthogonal series.
Keywords: mixed type equation, mixed boundary-value problem, biorthogonal system functions, completeness, existence and uniqueness of solution.
@article{IVM_2016_3_a2,
     author = {A. A. Gimaltdinova and K. V. Kurman},
     title = {Boundary problem for {Lavrent'ev--Bitsadze} equation with two internal lines of change of a~type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--37},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_3_a2/}
}
TY  - JOUR
AU  - A. A. Gimaltdinova
AU  - K. V. Kurman
TI  - Boundary problem for Lavrent'ev--Bitsadze equation with two internal lines of change of a~type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 23
EP  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_3_a2/
LA  - ru
ID  - IVM_2016_3_a2
ER  - 
%0 Journal Article
%A A. A. Gimaltdinova
%A K. V. Kurman
%T Boundary problem for Lavrent'ev--Bitsadze equation with two internal lines of change of a~type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 23-37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_3_a2/
%G ru
%F IVM_2016_3_a2
A. A. Gimaltdinova; K. V. Kurman. Boundary problem for Lavrent'ev--Bitsadze equation with two internal lines of change of a~type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 23-37. http://geodesic.mathdoc.fr/item/IVM_2016_3_a2/

[1] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973 | MR

[2] Shabat B. V., “Primery resheniya zadachi Dirikhle dlya uravneniya smeshannogo tipa”, DAN SSSR, 112:3 (1957), 386–389 | Zbl

[3] Bitsadze A. V., “Nekorrektnost zadachi Dirikhle dlya uravnenii smeshannogo tipa”, DAN SSSR, 122:2 (1958), 167–170 | Zbl

[4] Cannon J. R., “Dirichlet problem for an equation of mixed type with a discontinious coefficient”, Ann. Mat. Pura Appl., 62 (1963), 371–377 | DOI | MR | Zbl

[5] Nakhushev A. M., “Kriterii edinstvennosti zadachi Dirikhle dlya uravneniya smeshannogo tipa v tsilindricheskoi oblasti”, Differents. uravneniya, 6:1 (1970), 190–191 | Zbl

[6] Soldatov A. P., “Zadachi tipa Dirikhle dlya uravneniya Lavrenteva–Bitsadze. I”, Dokl. RAN, 332:6 (1993), 696–698 | Zbl

[7] Soldatov A. P., “Zadachi tipa Dirikhle dlya uravneniya Lavrenteva–Bitsadze. II”, Dokl. RAN, 333:1 (1993), 16–18 | Zbl

[8] Zhegalov V. I., “O zadachakh tipa Dirikhle so sdvigami dlya uravneniya Lavrenteva–Bitsadze”, Tr. semin. po kraevym zadacham, 23, Izd-vo Kazansk. un-ta, Kazan, 1987, 81–88 | MR

[9] Khachev M. M., Pervaya kraevaya zadacha dlya lineinykh uravnenii smeshannogo tipa, Elbrus, Nalchik, 1998

[10] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | MR | Zbl

[11] Sabitov K. B., Suleimanova A. Kh., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa vtorogo roda v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2007, no. 4, 45–53 | MR | Zbl

[12] Sabitov K. B., Suleimanova A. Kh., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa s kharakteristicheskim vyrozhdeniem v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2009, no. 11, 43–52 | MR | Zbl

[13] Sabitov K. B., Vagapova E. V., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya v pryamougolnoi oblasti”, Differents. uravneniya, 49:1 (2013), 68–78 | MR | Zbl

[14] Khairullin R. S., “K zadache Dirikhle dlya uravneniya smeshannogo tipa vtorogo roda s silnym vyrozhdeniem”, Differents. uravneniya, 49:4 (2013), 528–535 | MR

[15] Sabitov K. B., Melisheva E. P., “Zadacha Dirikhle dlya nagruzhennogo uravneniya smeshannogo tipa”, Izv. vuzov. Matem., 2013, no. 7, 62–76 | Zbl

[16] Ilin V. A., “Edinstvennost i prinadlezhnost $W_2^1$ klassicheskogo resheniya smeshannoi zadachi dlya samosopryazhennogo giperbolicheskogo uravneniya”, Matem. zametki, 17:1 (1975), 91–101 | MR | Zbl

[17] Lomov I. S., “Malye znamenateli v analiticheskoi teorii vyrozhdayuschikhsya differentsialnykh uravnenii”, Differents. uravneniya, 29:12 (1993), 2079–2089 | MR | Zbl

[18] Lomov I. S., “Negladkie sobstvennye funktsii v zadachakh matematicheskoi fiziki”, Differents. uravneniya, 47:3 (2011), 358–365 | MR

[19] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4 (1971), 15–41 | MR | Zbl

[20] Bari N. K., “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uchen. zap. Moskovsk. un-ta, 148, 1971, 69–107 | MR

[21] Ilin V. A., “O bezuslovnoi bazisnosti na zamknutom intervale sistem sobstvennykh i prisoedinennykh funktsii differentsialnogo operatora vtorogo poryadka”, DAN SSSR, 273:5 (1983), 1048–1053 | MR | Zbl