Finitely generated lattices with $M$-standard elements among generators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 18-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a lattice is modular if it is generated by three elements, two of which are $M$-standard. We also show that a lattice generated by $n$, $n>3$, $M$-standard elements must not necessarily be modular.
Keywords: modular lattice, left-modular element, right-modular element, $M$-standard element.
@article{IVM_2016_3_a1,
     author = {A. G. Gein},
     title = {Finitely generated lattices with $M$-standard elements among generators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--22},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_3_a1/}
}
TY  - JOUR
AU  - A. G. Gein
TI  - Finitely generated lattices with $M$-standard elements among generators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 18
EP  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_3_a1/
LA  - ru
ID  - IVM_2016_3_a1
ER  - 
%0 Journal Article
%A A. G. Gein
%T Finitely generated lattices with $M$-standard elements among generators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 18-22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_3_a1/
%G ru
%F IVM_2016_3_a1
A. G. Gein. Finitely generated lattices with $M$-standard elements among generators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 18-22. http://geodesic.mathdoc.fr/item/IVM_2016_3_a1/

[1] Bhatta S. P., “A characterization of neutral elements by the exclusion of sublattices”, Discrete Math., 309 (2009), 1691–1702 | DOI | MR | Zbl

[2] Maeda S., “On finite-modular atomistic lattices”, Algebra Universalis, 12:1 (1981), 76–80 | DOI | MR | Zbl

[3] Ore O., “On the theorem of Jordan–Hölder”, Trans. Amer. Math. Soc., 41 (1937), 266–275 | MR | Zbl

[4] Stern M., Semimodular lattices. Theory and applications, Cambridge University Press, 1999 | MR | Zbl

[5] Gratzer G., Schmidt E. T., “Standard ideals in lattices”, Acta Math. Acad. Sci. Hungar., 12 (1961), 17–86 | DOI | MR | Zbl

[6] Gein A. G., Shushpanov M. P., “Ob opredelyayuschikh sootnosheniyakh svobodnoi modulyarnoi reshetki ranga 3”, Izv. vuzov. Matem., 2013, no. 10, 69–72 | MR | Zbl

[7] Gein A. G., Shushpanov M. P., “Konechnoporozhdennye reshetki s vpolne modulyarnymi elementami sredi porozhdayuschikh”, Algebra i logika, 52:6 (2013), 657–666 | MR

[8] Gein A. G., Shushpanov M. P., “The minimal system of defining relations of the free modular lattice of rank $3$ and lattices close to modular one”, Mathematics and Statistics, 2:1 (2014), 27–31 [Elektronnaya versiya: ] http://www.hrpub.org/journals/article_info.php?aid=922