Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_3_a1, author = {A. G. Gein}, title = {Finitely generated lattices with $M$-standard elements among generators}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {18--22}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_3_a1/} }
A. G. Gein. Finitely generated lattices with $M$-standard elements among generators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2016), pp. 18-22. http://geodesic.mathdoc.fr/item/IVM_2016_3_a1/
[1] Bhatta S. P., “A characterization of neutral elements by the exclusion of sublattices”, Discrete Math., 309 (2009), 1691–1702 | DOI | MR | Zbl
[2] Maeda S., “On finite-modular atomistic lattices”, Algebra Universalis, 12:1 (1981), 76–80 | DOI | MR | Zbl
[3] Ore O., “On the theorem of Jordan–Hölder”, Trans. Amer. Math. Soc., 41 (1937), 266–275 | MR | Zbl
[4] Stern M., Semimodular lattices. Theory and applications, Cambridge University Press, 1999 | MR | Zbl
[5] Gratzer G., Schmidt E. T., “Standard ideals in lattices”, Acta Math. Acad. Sci. Hungar., 12 (1961), 17–86 | DOI | MR | Zbl
[6] Gein A. G., Shushpanov M. P., “Ob opredelyayuschikh sootnosheniyakh svobodnoi modulyarnoi reshetki ranga 3”, Izv. vuzov. Matem., 2013, no. 10, 69–72 | MR | Zbl
[7] Gein A. G., Shushpanov M. P., “Konechnoporozhdennye reshetki s vpolne modulyarnymi elementami sredi porozhdayuschikh”, Algebra i logika, 52:6 (2013), 657–666 | MR
[8] Gein A. G., Shushpanov M. P., “The minimal system of defining relations of the free modular lattice of rank $3$ and lattices close to modular one”, Mathematics and Statistics, 2:1 (2014), 27–31 [Elektronnaya versiya: ] http://www.hrpub.org/journals/article_info.php?aid=922