On solvability of the Cauchy problem for one quasilinear singular functional-differential equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 54-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem with zero initial conditions for quasilinear singular functional-differential equation of the second order with a delay at singular summand. We obtain sufficient conditions of solvability of the problem.
Keywords: singular differential equation, Cauchy problem, functional-differential equation.
@article{IVM_2016_2_a7,
     author = {V. P. Plaksina and I. M. Plaksina and E. V. Plekhova},
     title = {On solvability of the {Cauchy} problem for one quasilinear singular functional-differential equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {54--61},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a7/}
}
TY  - JOUR
AU  - V. P. Plaksina
AU  - I. M. Plaksina
AU  - E. V. Plekhova
TI  - On solvability of the Cauchy problem for one quasilinear singular functional-differential equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 54
EP  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_2_a7/
LA  - ru
ID  - IVM_2016_2_a7
ER  - 
%0 Journal Article
%A V. P. Plaksina
%A I. M. Plaksina
%A E. V. Plekhova
%T On solvability of the Cauchy problem for one quasilinear singular functional-differential equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 54-61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_2_a7/
%G ru
%F IVM_2016_2_a7
V. P. Plaksina; I. M. Plaksina; E. V. Plekhova. On solvability of the Cauchy problem for one quasilinear singular functional-differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 54-61. http://geodesic.mathdoc.fr/item/IVM_2016_2_a7/

[1] Shragin I. V., “Ob usloviyakh Karateodori”, UMN, 34:3(207) (1979), 219–220 | MR | Zbl

[2] Kiguradze I. T., Shekhter B. D., “Singulyarnye kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii”, Itogi nauki i tekhn. Ser. Sovremen. probl. matem. Novye dostizheniya, 30, 1987, 105–201 | MR | Zbl

[3] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyuternykh issledovanii, M., 2002

[4] Faddeev L. D., Yakubovskii O. A., Lektsii po kvantovoi mekhanike dlya studentov-matematikov, Izd-vo LGU, Leningrad, 1980

[5] Simonov N. I., Prikladnye metody analiza u Eilera, GITTL, M., 1957

[6] Norkin S. B., “Struktura reshenii differentsialnogo uravneniya s zapazdyvayuschim argumentom v okrestnosti osoboi tochki”, Pr. a štud. VS dopravy a spojov Ziline. Sér. mat.-fyz., 1980, no. 3, 27–46 | MR | Zbl

[7] Fišnarová S., Mařík R., “Oscillation criteria for neutral second-order half-linear differential equations with applications to Euler type equations”, Boundary Value Problems, 2014 (2014), 83, 14 pp. www.boundaryvalueproblems.com/content/2014/1/83 | DOI | MR

[8] Kiguradze I., Sokhadze Z., “On the global solvability of the Cauchy problem for singular functional differential equations”, Georgian math. journal, 4:4 (1997), 355–372 | DOI | MR | Zbl

[9] Labovskii S. M., “Polozhitelnye resheniya dvukhtochechnoi kraevoi zadachi dlya singulyarnogo lineinogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 24:10 (1988), 1116–1123 | MR

[10] Shindyapin A. I., “O kraevoi zadache dlya odnogo singulyarnogo uravneniya”, Differents. uravneniya, 20:3 (1984), 450–455 | MR | Zbl

[11] Alvesh M. Zh., “Ob odnoi nelineinoi kraevoi zadache s nesummiruemoi osobennostyu”, Izv. vuzov. Matem., 2000, no. 4, 56–59 | MR | Zbl

[12] Bravyi E. I., “O razreshimosti dvukhtochechnoi kraevoi zadachi dlya lineinogo singulyarnogo funktsionalno-differentsialnogo uravneniya”, Izv. vuzov. Matem., 2004, no. 6, 14–20 | MR | Zbl

[13] Plaksina I. M., “O polozhitelnosti funktsii Koshi singulyarnogo lineinogo funktsionalno-differentsialnogo uravneniya”, Izv. vuzov. Matem., 2013, no. 10, 16–23 | MR | Zbl

[14] Muntean I., “The spectrum of the Cesaro operator”, Mathématica. Revue d'analyse numérique et de théorie de l'approximation, 22:45 (1980), 97–105 | MR | Zbl

[15] Bragina N. A., Razreshimost kraevykh zadach dlya kvazilineinykh funktsionalno-differentsialnykh uravnenii, Avtoref. diss. $\dots$ kand. fiz.-matem. nauk, Perm, 2004

[16] Abdullaev A. R., Plaksina I. M., “Ob otsenke spektralnogo radiusa odnogo singulyarnogo integralnogo operatora”, Izv. vuzov. Matem., 2015, no. 2, 3–9 | Zbl

[17] Abdullaev A. R., Plekhova E. V., “O spektre operatora Chezaro”, Nauchno-tekhn. vestn. Povolzhya, 2011, no. 4, 33–37

[18] Khalmosh P., Sander V., Ogranichennye integralnye operatory v prostranstvakh $L^2$, Nauka, M., 1985 | MR

[19] Drakhlin M. E., Plyshevskaya T. K., “K teorii funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 14:8 (1978), 1347–1361 | MR | Zbl

[20] Riss F., Sëkefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[21] Maksimov V. P., “O nekotorykh nelineinykh kraevykh zadachakh”, Differents. uravneniya, 19:3 (1983), 396–414 | MR | Zbl

[22] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR