Phenomenologically symmetric geometry of two sets of rank~$(3,2)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 48-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We determine and study one of the simplest phenomenologically symmetric geometry of two sets of rank $(3,2)$, given on one- and two-dimensional manifolds by metric function.
Keywords: geometry of two sets, metric function, phenomenological symmetry.
@article{IVM_2016_2_a6,
     author = {G. G. Mikhailichenko},
     title = {Phenomenologically symmetric geometry of two sets of rank~$(3,2)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--53},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a6/}
}
TY  - JOUR
AU  - G. G. Mikhailichenko
TI  - Phenomenologically symmetric geometry of two sets of rank~$(3,2)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 48
EP  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_2_a6/
LA  - ru
ID  - IVM_2016_2_a6
ER  - 
%0 Journal Article
%A G. G. Mikhailichenko
%T Phenomenologically symmetric geometry of two sets of rank~$(3,2)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 48-53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_2_a6/
%G ru
%F IVM_2016_2_a6
G. G. Mikhailichenko. Phenomenologically symmetric geometry of two sets of rank~$(3,2)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 48-53. http://geodesic.mathdoc.fr/item/IVM_2016_2_a6/

[1] Mihailichenko G. G., Muradov R. M., The geometry of two sets, LAP LAMBERT Academic Publ., Saarbrucken, 2013

[2] Kulakov Yu. I., Teoriya fizicheskikh struktur, Dominiko, M., 2004

[3] Mikhailichenko G. G., “Binarnaya fizicheskaya struktura ranga $(3,2)$”, Sib. matem. zhurn., 14:5 (1973), 1057–1064

[4] Kyrov V. A., “Proektivnaya geometriya i teoriya fizicheskikh struktur”, Izv. vuzov. Matem., 2008, no. 11, 48–59 | MR | Zbl