Phenomenologically symmetric geometry of two sets of rank $(3,2)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 48-53
Cet article a éte moissonné depuis la source Math-Net.Ru
We determine and study one of the simplest phenomenologically symmetric geometry of two sets of rank $(3,2)$, given on one- and two-dimensional manifolds by metric function.
Keywords:
geometry of two sets, metric function, phenomenological symmetry.
@article{IVM_2016_2_a6,
author = {G. G. Mikhailichenko},
title = {Phenomenologically symmetric geometry of two sets of rank~$(3,2)$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {48--53},
year = {2016},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a6/}
}
G. G. Mikhailichenko. Phenomenologically symmetric geometry of two sets of rank $(3,2)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 48-53. http://geodesic.mathdoc.fr/item/IVM_2016_2_a6/
[1] Mihailichenko G. G., Muradov R. M., The geometry of two sets, LAP LAMBERT Academic Publ., Saarbrucken, 2013
[2] Kulakov Yu. I., Teoriya fizicheskikh struktur, Dominiko, M., 2004
[3] Mikhailichenko G. G., “Binarnaya fizicheskaya struktura ranga $(3,2)$”, Sib. matem. zhurn., 14:5 (1973), 1057–1064
[4] Kyrov V. A., “Proektivnaya geometriya i teoriya fizicheskikh struktur”, Izv. vuzov. Matem., 2008, no. 11, 48–59 | MR | Zbl