Approximate solution to integral equation with logarithmic kernel of special form
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 40-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the quadrature formula with non-negative coefficients for integral with a special logarithmic kernel, we construct and substantiate a computational pattern for solving integral equation derived from the boundary-value problem for a function, which is harmonic in the unit disk under the boundary condition of the third kind. We obtain uniform estimates of deviations of the quadrature formula and the approximate solution to integral equation.
Keywords: integral equation, logarithmic kernel, approximate solution
Mots-clés : quadrature formula.
@article{IVM_2016_2_a5,
     author = {I. N. Meleshko and P. G. Lasyi},
     title = {Approximate solution to integral equation with logarithmic kernel of special form},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--47},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a5/}
}
TY  - JOUR
AU  - I. N. Meleshko
AU  - P. G. Lasyi
TI  - Approximate solution to integral equation with logarithmic kernel of special form
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 40
EP  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_2_a5/
LA  - ru
ID  - IVM_2016_2_a5
ER  - 
%0 Journal Article
%A I. N. Meleshko
%A P. G. Lasyi
%T Approximate solution to integral equation with logarithmic kernel of special form
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 40-47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_2_a5/
%G ru
%F IVM_2016_2_a5
I. N. Meleshko; P. G. Lasyi. Approximate solution to integral equation with logarithmic kernel of special form. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 40-47. http://geodesic.mathdoc.fr/item/IVM_2016_2_a5/

[1] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatlit, M.–L., 1962 | MR

[2] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, GITTL, M., 1953 | MR

[3] Pykhteev G. N., Priblizhennye metody vychisleniya integralov tipa Koshi spetsialnogo vida, Nauka, Novosibirsk, 1982 | MR

[4] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1977 | MR