Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_2_a2, author = {A. V. Gavrikov}, title = {T-irreducible extension of polygonal digraphs}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {18--23}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a2/} }
A. V. Gavrikov. T-irreducible extension of polygonal digraphs. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 18-23. http://geodesic.mathdoc.fr/item/IVM_2016_2_a2/
[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997 | MR
[2] Kurnosova S. G., “$T$-neprivodimye rasshireniya dlya nekotorykh klassov grafov”, Teoreticheskie problemy informatiki i ee prilozhenii, Sb. nauch. tr., ed. prof. A. A. Sytnik, Izd-vo Saratovsk. un-ta, Saratov, 2004, 113–125
[3] Kurnosova S. G., “$T$-neprivodimye rasshireniya polnykh binarnykh derevev”, Vestn. Tomsk. gos. un-ta. Prilozh., 2005, no. 14, 158–160
[4] Salii V. N., “Dokazatelstva s nulevym razglasheniem v zadachakh o rasshireniyakh grafov”, Vestn. Tomsk. gos. un-ta. Prilozh., 2003, no. 6, 63–65 | MR
[5] Abrosimov M. B., “Nekotorye voprosy o minimalnykh rasshireniyakh grafov”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 6:1/2 (2006), 86–91
[6] Hayes J. P., “A graph model for fault-tolerant computing systems”, IEEE transaction on computer, C-26:9 (1976), 875–884 | DOI | MR
[7] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR | Zbl
[8] Salii V. N., “Uporyadochennoe mnozhestvo svyaznykh chastei mnogougolnogo grafa”, Izv. Saratovsk. gos. un-ta, 13:2 (2013), 44–51