T-irreducible extension of polygonal digraphs
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 18-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Directed graphs are mathematical models of discrete systems. T-irreducible extensions are widely used in cryptography and diagnosis of discrete systems. A polygonal origraph is a digraph obtained from a circuit by some orientation of its edges. We propose an algorithm to construct a T-irreducible extension of a polygonal graph.
Keywords: polygonal graph, fault-tolerance of discrete systems, T-irreducible extension.
@article{IVM_2016_2_a2,
     author = {A. V. Gavrikov},
     title = {T-irreducible extension of polygonal digraphs},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--23},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a2/}
}
TY  - JOUR
AU  - A. V. Gavrikov
TI  - T-irreducible extension of polygonal digraphs
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 18
EP  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_2_a2/
LA  - ru
ID  - IVM_2016_2_a2
ER  - 
%0 Journal Article
%A A. V. Gavrikov
%T T-irreducible extension of polygonal digraphs
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 18-23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_2_a2/
%G ru
%F IVM_2016_2_a2
A. V. Gavrikov. T-irreducible extension of polygonal digraphs. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 18-23. http://geodesic.mathdoc.fr/item/IVM_2016_2_a2/

[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997 | MR

[2] Kurnosova S. G., “$T$-neprivodimye rasshireniya dlya nekotorykh klassov grafov”, Teoreticheskie problemy informatiki i ee prilozhenii, Sb. nauch. tr., ed. prof. A. A. Sytnik, Izd-vo Saratovsk. un-ta, Saratov, 2004, 113–125

[3] Kurnosova S. G., “$T$-neprivodimye rasshireniya polnykh binarnykh derevev”, Vestn. Tomsk. gos. un-ta. Prilozh., 2005, no. 14, 158–160

[4] Salii V. N., “Dokazatelstva s nulevym razglasheniem v zadachakh o rasshireniyakh grafov”, Vestn. Tomsk. gos. un-ta. Prilozh., 2003, no. 6, 63–65 | MR

[5] Abrosimov M. B., “Nekotorye voprosy o minimalnykh rasshireniyakh grafov”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 6:1/2 (2006), 86–91

[6] Hayes J. P., “A graph model for fault-tolerant computing systems”, IEEE transaction on computer, C-26:9 (1976), 875–884 | DOI | MR

[7] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR | Zbl

[8] Salii V. N., “Uporyadochennoe mnozhestvo svyaznykh chastei mnogougolnogo grafa”, Izv. Saratovsk. gos. un-ta, 13:2 (2013), 44–51